首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   658篇
  免费   39篇
  国内免费   1篇
  2024年   2篇
  2023年   4篇
  2022年   24篇
  2021年   28篇
  2020年   16篇
  2019年   9篇
  2018年   14篇
  2017年   17篇
  2016年   23篇
  2015年   32篇
  2014年   44篇
  2013年   49篇
  2012年   52篇
  2011年   63篇
  2010年   35篇
  2009年   22篇
  2008年   43篇
  2007年   27篇
  2006年   30篇
  2005年   24篇
  2004年   28篇
  2003年   26篇
  2002年   21篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1998年   7篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有698条查询结果,搜索用时 15 毫秒
601.
Golden Rice--five years on the road--five years to go?   总被引:1,自引:0,他引:1  
Provitamin A accumulates in the grain of Golden Rice as a result of genetic transformation. In developing countries, where vitamin A deficiency prevails, grain from Golden Rice is expected to provide this important micronutrient sustainably through agriculture. Since its original production, the prototype Golden Rice has undergone intense research to increase the provitamin A content, to establish the scientific basis for its carotenoid complement, and to better comply with regulatory requirements. Today, the current focus is on how to get Golden Rice effectively into the hands of farmers, which is a novel avenue for public sector research, carried out with the aid of international research consortia. Additional new research is underway to further increase the nutritional value of Golden Rice.  相似文献   
602.
Retinal and its derivatives represent essential compounds in many biological systems. In animals, they are synthesized through a symmetrical cleavage of beta-carotene catalysed by a monooxygenase. Here, we demonstrate that the open reading frame sll1541 from the cyanobacterium Synechocystis sp. PCC 6803 encodes the first eubacterial, retinal synthesizing enzyme (Diox1) thus far reported. In contrast to enzymes from animals, Diox1 converts beta-apo-carotenals instead of beta-carotene into retinal in vitro. The identity of the enzymatic product was proven by HPLC, GC-MS and in a biological test. Investigations, of the stereospecifity showed that Diox1 cleaved only the all-trans form of beta-apo-8'-carotenal, yielding all-trans-retinal. However, Diox1 exhibited wide substrate specificity with respect to chain-lengths and functional end-groups. Although with divergent Km and Vmax values, the enzyme converted beta-apo-carotenals, (3R)-3-OH-beta-apo-carotenals as well as apo-lycopenals into retinal, (3R)-3-hydroxy-retinal and acycloretinal respectively. In addition, the alcohols of these substrates were cleaved to yield the corresponding retinal derivatives.  相似文献   
603.
The lens is composed of highly stable and long-lived proteins, the crystallins which are divided into alpha-, beta-, and gamma-crystallins. Human gamma-crystallins belong to the betagamma superfamily. A large number of gamma-crystallins have been sequenced and have been found to share remarkable sequence homology with each other. Some of the gamma-crystallins from various sources have also been elucidated structurally by X-ray crystallographic or NMR spectroscopic experiments. Their three-dimensional structures are also similar having consisted of two domains each possessing two Greek key motifs. In this study we have constructed the comparative or homology models of the four major human gamma-crystallins, gammaA-,gammaB-, gammaC-, and gammaD-crystallins and studied the charge network in these crystallins. Despite an overall structural similarity between these crystallins, differences in the ion pair formation do exist which is partly due to the differences in their primary sequence and partly due to the structural orientation of the neighboring amino acids. In this study, we present an elaborate analysis of these charged interactions and their formation or loss with respect to the structural changes.  相似文献   
604.
Clade C is one of the most prevalent genetic subtypes of human immunodeficiency virus type 1 (HIV-1) in the world today and one of the least studied with respect to neutralizing antibodies. Most information on HIV-1 serology as it relates to neutralization is derived from clade B. Clade C primary isolates of HIV-1 from South Africa and Malawi were shown here to resemble clade B isolates in their resistance to inhibition by soluble CD4 and their sensitivity to neutralization by human monoclonal antibody immunoglobulin G1b12 and, to a lesser extent, 2F5. Unlike clade B isolates, however, all 16 clade C isolates examined resisted neutralization by 2G12. Infection with clade C HIV-1 in a cohort of female sex workers in South Africa generated antibodies that neutralized the autologous clade C isolate and T-cell-line-adapted (TCLA) strains of clade B. Neutralization of clade B TCLA strains was much more sensitive to the presence of autologous gp120 V3 loop peptides compared to the neutralization of clade C isolates in most cases. Thus, the native structure of gp120 on primary isolates of clade C will likely pose a challenge for neutralizing antibody induction by candidate HIV-1 vaccines much the same as it has for clade B. The autologous neutralizing antibody response following primary infection with clade C HIV-1 in South Africa matured slowly, requiring at least 4 to 5 months to become detectable. Once detectable, extensive cross-neutralization of heterologous clade C isolates from South Africa was observed, suggesting an unusual degree of shared neutralization determinants at a regional level. This high frequency of cross-neutralization differed significantly from the ability of South African clade C serum samples to neutralize clade B isolates but did not differ significantly from results of other combinations of clade B and C reagents tested in checkerboard assays. Notably, two clade C serum samples obtained after less than 2 years of infection neutralized a broad spectrum of clade B and C isolates. Other individual serum samples showed a significant clade preference in their neutralizing activity. Our results suggest that clades B and C are each comprised of multiple neutralization serotypes, some of which are more clade specific than others. The clustering of shared neutralization determinants on clade C primary HIV-1 isolates from South Africa suggests that neutralizing antibodies induced by vaccines will have less epitope diversity to overcome at a regional level.  相似文献   
605.
606.
Vitamin-A deficiency (VAD) is a major malnutrition problem in South Asia, where indica rice is the staple food. Indica-type rice varieties feed more than 2 billion people. Hence, we introduced a combination of transgenes using the biolistic system of transformation enabling biosynthesis of provitamin A in the endosperm of several indica rice cultivars adapted to diverse ecosystems of different countries. The rice seed-specific glutelin promoter (Gt-1 P) was used to drive the expression of phytoene synthase (psy), while lycopene beta-cyclase (lcy) and phytoene desaturase (crtI), fused to the transit peptide sequence of the pea-Rubisco small subunit, were driven by the constitutive cauliflower mosaic virus promoter (CaMV35S P). Transgenic plants were recovered through selection with either CaMV35S P driven hph (hygromycin phosphotransferase) gene or cestrum yellow leaf curling virus promoter (CMP) driven pmi (phophomannose isomerase) gene. Molecular and biochemical analyses demonstrated stable integration and expression of the transgenes. The yellow colour of the polished rice grain evidenced the carotenoid accumulation in the endosperm. The colour intensity correlated with the estimated carotenoid content by spectrophotometric and HPLC analysis. Carotenoid level in cooked polished seeds was comparable (with minor loss of xanthophylls) to that in non-cooked seeds of the same transgenic line. The variable segregation pattern in T1 selfing generation indicated single to multiple loci insertion of the transgenes in the genome. This is the first report of using nonantibiotic pmi driven by a novel promoter in generating transgenic indica rice for possible future use in human nutrition.  相似文献   
607.
Drosophila Bazooka and atypical protein kinase C are essential for epithelial polarity and adhesion. We show here that wild-type bazooka function is required during cell invasion of epithelial follicle cells mutant for the tumor suppressor discs large. Clonal studies indicate that follicle cell Bazooka acts as a permissive factor during cell invasion, possibly by stabilizing adhesion between the invading somatic cells and their substratum, the germline cells. Genetic epistasis experiments demonstrate that bazooka acts downstream of discs large in tumor cell invasion. In contrast, during the migration of border cells, Bazooka function is dispensable for cell invasion and motility, but rather is required cell-autonomously in mediating cell adhesion within the migrating border cell cluster. Taken together, these studies reveal Bazooka functions distinctly in different types of invasive behaviors of epithelial follicle cells, potentially by regulating adhesion between follicle cells or between follicle cells and their germline substratum.  相似文献   
608.
Normal cellular metabolism produces oxidants that are neutralized within cells by antioxidant enzymes and other antioxidants. An imbalance between oxidant and antioxidant has been postulated to lead the degeneration of dopaminergic neurons in Parkinson's disease. In this study, we examined whether selenium, an antioxidant, can prevent or slowdown neuronal injury in a 6-hydroxydopamine (6-OHDA) model of Parkinsonism. Rats were pre-treated with sodium selenite (0.1, 0.2 and 0.3 mg/kg body weight) for 7 days. On day 8, 2 micro L 6-OHDA (12.5 micro g in 0.2% ascorbic acid in normal saline) was infused in the right striatum. Two weeks after 6-OHDA infusion, rats were tested for neurobehavioral activity, and were killed after 3 weeks of 6-OHDA infusion for the estimation of glutathione peroxidase, glutathione-S-transferase, glutathione reductase, glutathione content, lipid peroxidation, and dopamine and its metabolites. Selenium was found to be successful in upregulating the antioxidant status and lowering the dopamine loss, and functional recovery returned close to the baseline dose-dependently. This study revealed that selenium, which is an essential part of our diet, may be helpful in slowing down the progression of neurodegeneration in parkinsonism.  相似文献   
609.
Hydroxyurea is considered an antineoplastic drug, which also plays an important role in the treatment of sickle cell anemia patients. We evaluated and compared the clastogenic and cytotoxic effects of hydroxyurea, using chromosomal aberrations and mitotic index, respectively, as endpoints. In vitro short-term cultures of lymphocytes were exposed to several concentrations of this drug, at various cell cycle phases. There was a significant increase in the cytotoxicity of hydroxyurea at G1 and G1/S as well in the G2 phase of the cell cycle. Hydroxyurea did not significantly increase chromosome aberrations. There was an S-dependent cytotoxic effect of hydroxyurea, which is expected based on the known activity of hydroxyurea as an inhibitor of ribonucleotide reductase.  相似文献   
610.
Depletion of intracellular polyamine pools invariably inhibits cell growth. Although this is usually accomplished by inhibiting polyamine biosynthesis, we reasoned that this might be more effectively achieved by activation of polyamine catabolism at the level of spermidine/spermine N(1)-acetyltransferase (SSAT); a strategy first validated in MCF-7 breast carcinoma cells. We now examine the possibility that, due to unique aspects of polyamine homeostasis in the prostate gland, tumor cells derived from it may be particularly sensitive to activated polyamine catabolism. Thus, SSAT was conditionally overexpressed in LNCaP prostate carcinoma cells via a tetracycline-regulatable (Tet-off) system. Tetracycline removal resulted in a rapid approximately 10-fold increase in SSAT mRNA and an increase of approximately 20-fold in enzyme activity. SSAT products N(1)-acetylspermidine, N(1)-acetylspermine, and N(1),N(12)-diacetylspermine accumulated intracellularly and extracellularly. SSAT induction also led to a growth inhibition that was not accompanied by polyamine pool depletion as it was in MCF-7 cells. Rather, intracellular spermidine and spermine pools were maintained at or above control levels by a robust compensatory increase in ornithine decarboxylase and S-adenosylmethionine decarboxylase activities. This, in turn, gave rise to a high rate of metabolic flux through both the biosynthetic and catabolic arms of polyamine metabolism. Treatment with the biosynthesis inhibitor alpha-difluoromethylornithine during tetracycline removal interrupted flux and prevented growth inhibition. Thus, flux-induced growth inhibition appears to derive from overaccumulation of metabolic products and/or from depletion of metabolic precursors. Metabolic effects that were not excluded as possible contributing factors include high levels of putrescine and acetylated polyamines, a 50% reduction in S-adenosylmethionine, and a 45% decline in the SSAT cofactor acetyl-CoA. Overall, the study demonstrates that activation of polyamine catabolism in LNCaP cells elicits a compensatory increase in polyamine biosynthesis and downstream metabolic events that culminate in growth inhibition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号