首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   658篇
  免费   39篇
  国内免费   1篇
  2024年   2篇
  2023年   4篇
  2022年   24篇
  2021年   28篇
  2020年   16篇
  2019年   9篇
  2018年   14篇
  2017年   17篇
  2016年   23篇
  2015年   32篇
  2014年   44篇
  2013年   49篇
  2012年   52篇
  2011年   63篇
  2010年   35篇
  2009年   22篇
  2008年   43篇
  2007年   27篇
  2006年   30篇
  2005年   24篇
  2004年   28篇
  2003年   26篇
  2002年   21篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1998年   7篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有698条查询结果,搜索用时 500 毫秒
541.
TCR signaling plays a governing role in both the survival and differentiation of bipotent double-positive thymocytes into the CD4(+) and CD8(+) single-positive T cell lineages. A central mediator of this developmental program is the small GTPase Ras, emitting cytoplasmic signals through downstream MAPK pathways and eventually affecting gene expression. TCR signal transduction orchestrates the activation of Ras by integrating at least two Ras-guanyl nucleotide exchange factors, RasGRP1 and Sos. In this study, we have characterized the relationship between RasGRP1 function and its potential roles in promoting ERK activity, cell survival, maturation, and lineage commitment. Investigations on RasGRP1(-/-) mice expressing a transgenic (Tg) MHC class II-restricted TCR revealed that the development of CD4 T cells expressing this Tg TCR is completely dependent on RasGRP1. Unexpectedly, a small number of functional CD8 single-positive thymocytes expressing the Tg MHC class II-restricted TCR exists in mutant mice. In addition, RasGRP1(-/-) double-positive thymocytes exhibit marked deficits in TCR-stimulated up-regulation of the positive selection marker CD69 and the antiapoptotic protein Bcl-2, whereas CD5 induction is unaffected. To evaluate the role of RasGRP1 in providing cellular survival signaling, we enforced Bcl-2 expression in RasGRP1(-/-) thymocytes. These studies demonstrate that RasGRP1 function cannot be fully complemented by Tg Bcl-2 expression. Therefore, we propose that RasGRP1 transmits differentiation signaling critically required for CD4 T cell development.  相似文献   
542.
543.
Patch-clamp is an important method to monitor the electrophysiological activity of cells and the role of pharmacological compounds on specific ion channel proteins. In recent years, planar patch-clamp chips have been developed as a higher throughput approach to the established glass-pipette method. However, proper conditions to optimize the high resistance cell-to-probe seals required to measure the small currents resulting from ion channel activity are still the subject of conjecture. Here, we report on the design of multiple-aperture (sieve) chips to rapidly facilitate assessment of cell-to-aperture interactions in statistically significant numbers. We propose a method to pre-screen the quality of seals based on a dye loading protocol through apertures in the chip and subsequent evaluation with fluorescence confocal microscopy. We also show the first scanning electron micrograph of a focused ion beam section of a cell in a patch-clamp chip aperture.  相似文献   
544.
545.
Salim S  Asghar M  Taneja M  Hovatta I  Wu YL  Saha K  Sarraj N  Hite B 《FEBS letters》2011,585(9):1375-1381
Regulator of G-protein signaling protein (RGS)-2 is a modulator of anxiety and dysregulation of oxidative stress is implicated in anxiety. Also, RGS2 expression is reported to be induced by oxidative stress. Thus, if oxidative stress induces RGS2 expression and lack of RGS2 causes anxiety, then mechanisms that link RGS2 and oxidative stress potentially critical to anxiety must be revealed. Our study is the first to suggest role of RGS2 in regulation of enzymes involved in antioxidant defense namely glyoxalase-1 and glutathione reductase-1 via activation of p38 MAPK and PKC pathways in an Sp-1 dependent manner.  相似文献   
546.
547.
The C3-V4 region is a major target of autologous neutralizing antibodies in HIV-1 subtype C infection. We previously identified a Center for AIDS Program of Research in South Africa (CAPRISA) participant, CAP88, who developed a potent neutralizing-antibody response within 3 months of infection that targeted an epitope in the C3 region of the HIV-1 envelope (P. L. Moore et al., PLoS Pathog. 5:e1000598, 2009). Here we showed that these type-specific antibodies could be adsorbed using recombinant gp120 from the transmitted/founder virus from CAP88 but not by gp120 made from other isolates. Furthermore, this activity could be depleted using a chimeric gp120 protein that contained only the C3 region from the CAP88 viral envelope engrafted onto the unrelated CAP63 viral envelope (called 63-88C3). On the basis of this, a differential sorting of memory B cells was performed using gp120s made from 63-88C3 and CAP63 labeled with different fluorochromes as positive and negative probes, respectively. This strategy resulted in the isolation of a highly specific monoclonal antibody (MAb), called CAP88-CH06, that neutralized the CAP88 transmitted/founder virus and viruses from acute infection but was unable to neutralize CAP88 viruses isolated at 6 and 12 months postinfection. The latter viruses contained 2 amino acid changes in the alpha-2 helix of C3 that mediated escape from this MAb. One of these changes involved the introduction of an N-linked glycan at position 339 that occluded the epitope, while the other mutation (either E343K or E350K) was a charge change. Our data validate the use of differential sorting to isolate a MAb targeting a specific epitope in the envelope glycoprotein and provided insights into the mechanisms of autologous neutralization escape.  相似文献   
548.
The targets of broadly cross-neutralizing (BCN) antibodies are of great interest in the HIV vaccine field. We have identified a subtype C HIV-1-superinfected individual, CAP256, with high-level BCN activity, and characterized the antibody specificity mediating breadth. CAP256 developed potent BCN activity peaking at 3 years postinfection, neutralizing 32 (76%) of 42 heterologous viruses, with titers of antibodies against some viruses exceeding 1:10,000. CAP256 showed a subtype bias, preferentially neutralizing subtype C and A viruses over subtype B viruses. CAP256 BCN serum targeted a quaternary epitope which included the V1V2 region. Further mapping identified residues F159, N160, L165, R166, D167, K169, and K171 (forming the FN/LRD-K-K motif) in the V2 region as crucial to the CAP256 epitope. However, the fine specificity of the BCN response varied over time and, while consistently dependent on R166 and K169, became gradually less dependent on D167 and K171, possibly contributing to the incremental increase in breadth over 4 years. The presence of an intact FN/LRD-K-K motif in heterologous viruses was associated with sensitivity, although the length of the adjacent V1 loop modulated the degree of sensitivity, with a shorter V1 region significantly associated with higher titers. Repair of the FN/LRD-K-K motif in resistant heterologous viruses conferred sensitivity, with titers sometimes exceeding 1:10,000. Comparison of the CAP256 epitope with that of the PG9/PG16 monoclonal antibodies suggested that these epitopes overlapped, adding to the mounting evidence that this may represent a common neutralization target that should be further investigated as a potential vaccine candidate.  相似文献   
549.
Rocky Mountain spotted fever (RMSF) is a tick-borne disease caused by the obligate intracellular bacterium Rickettsia rickettsii. Although RMSF was first reported in Colombia in 1937, it remains a neglected disease. Herein, we describe the investigation of a large cluster of cases of spotted fever rickettsiosis in a new area of Colombia.  相似文献   
550.
Neurosporaxanthin (β-apo-4'-carotenoic acid) biosynthesis has been studied in detail in the fungus Fusarium fujikuroi. The genes and enzymes for this biosynthetic pathway are known until the last enzymatic step, the oxidation of the aldehyde group of its precursor, β-apo-4'-carotenal. On the basis of sequence homology to Neurospora crassa YLO-1, which mediates the formation of apo-4'-lycopenoic acid from the corresponding aldehyde substrate, we cloned the carD gene of F. fujikuroi and investigated the activity of the encoded enzyme. In vitro assays performed with heterologously expressed protein showed the formation of neurosporaxanthin and other apocarotenoid acids from the corresponding apocarotenals. To confirm this function in vivo, we generated an Escherichia coli strain producing β-apo-4'-carotenal, which was converted into neurosporaxanthin upon expression of carD. Moreover, the carD function was substantiated by its targeted disruption in a F. fujikuroi carotenoid-overproducing strain, which resulted in the loss of neurosporaxanthin and the accumulation of β-apo-4'-carotenal, its derivative β-apo-4'-carotenol, and minor amounts of other carotenoids. Intermediates accumulated in the ΔcarD mutant suggest that the reactions leading to neurosporaxanthin in Neurospora and Fusarium are different in their order. In contrast to ylo-1 in N. crassa, carD mRNA content is enhanced by light, but to a lesser extent than other enzymatic genes of the F. fujikuroi carotenoid pathway. Furthermore, carD mRNA levels were higher in carotenoid-overproducing mutants, supporting a functional role for CarD in F. fujikuroi carotenogenesis. With the genetic and biochemical characterization of CarD, the whole neurosporaxanthin biosynthetic pathway of F. fujikuroi has been established.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号