首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   660篇
  免费   39篇
  国内免费   1篇
  2023年   3篇
  2022年   22篇
  2021年   28篇
  2020年   16篇
  2019年   11篇
  2018年   14篇
  2017年   17篇
  2016年   23篇
  2015年   32篇
  2014年   44篇
  2013年   51篇
  2012年   53篇
  2011年   63篇
  2010年   35篇
  2009年   22篇
  2008年   44篇
  2007年   27篇
  2006年   30篇
  2005年   24篇
  2004年   28篇
  2003年   27篇
  2002年   21篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1998年   7篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有700条查询结果,搜索用时 296 毫秒
11.
Carotenoids are isoprenoid compounds synthesized by all photosynthetic and some non-photosynthetic organisms. They are essential for photosynthesis and contribute to many other aspects of a plant's life. The oxidative breakdown of carotenoids gives rise to the formation of a diverse family of essential metabolites called apocarotenoids. This metabolic process either takes place spontaneously through reactive oxygen species or is catalyzed by enzymes generally belonging to the CAROTENOID CLEAVAGE DIOXYGENASE family. Apocarotenoids include the phytohormones abscisic acid and strigolactones (SLs), signaling molecules and growth regulators. Abscisic acid and SLs are vital in regulating plant growth, development and stress response. SLs are also an essential component in plants’ rhizospheric communication with symbionts and parasites. Other apocarotenoid small molecules, such as blumenols, mycorradicins, zaxinone, anchorene, β-cyclocitral, β-cyclogeranic acid, β-ionone and loliolide, are involved in plant growth and development, and/or contribute to different processes, including arbuscular mycorrhiza symbiosis, abiotic stress response, plant–plant and plant–herbivore interactions and plastid retrograde signaling. There are also indications for the presence of structurally unidentified linear cis-carotene-derived apocarotenoids, which are presumed to modulate plastid biogenesis and leaf morphology, among other developmental processes. Here, we provide an overview on the biology of old, recently discovered and supposed plant apocarotenoid signaling molecules, describing their biosynthesis, developmental and physiological functions, and role as a messenger in plant communication.  相似文献   
12.
This work aimed to investigate, for the first time, the chemical composition, antioxidant, antiparasitic, cytotoxicity, and antimicrobial activities of the aromatic plant Limonium oleifolium Mill. essential oil (EO) and organic extracts. L. oleifolium aerial parts essential oil was analyzed by GC-FID and GC-MS, and 46 constituents representing 98.25±1.12 % of the oil were identified. γ-Muurolene (10.81±0.07 %), cis-caryophyllene (7.71±0.06 %), o-cymene (7.07±0.01 %) and α-copaene (5.02±0.05 %) were the essential oil main compounds. The antioxidant activity of L. oleifolium EO and organic extracts (MeOH, CHCl3, AcOEt, BuOH) was explored using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ABTS, β-carotene/linoleic acid, cupric reducing antioxidant capacity (CUPRAC), and ferric reducing power assays. The results showed that L. oleifolium EO exhibit antioxidant capacity (IC50=17.40±1.32 μg/mL for DPPH assay, IC50=29.82±1.08 μg/mL for β-carotene assay, IC50=25.23±1.01 μg/mL for ABTS assay, IC50=9.11±0.08 μg/mL for CUPRAC assay and IC50=19.41±2.06 mg/mL for reducing power assay). Additionally, the EO showed significant activity against trophozoite form of Acanthamoeba castellanii (IC50=7.48±0.41 μg/mL) and promastigote form of Leishmania amazonensis (IC50=19.36±1.06 μg/mL) and low cytotoxicity on murine macrophages (LC50 90.23±1.09 μg/mL), as well as good antimicrobial activity against Staphylococcus aureus, Escherichia coli, Klebsiella oxytoca, and Pseudomonas aeruginosa. These results suggest that L. oleifolium essential oil is a valuable source of bioactive compounds presenting antioxidant, antiparasitic, and antimicrobial activities. Furthermore, it is considered nontoxic.  相似文献   
13.
Abstract

The costly media, inconsistent ligand density, ligand leakage, and possible destabilization of recombinant hepatitis B surface antigen (rHBsAg) particles are main drawbacks of using immunoaffinity chromatography (IAF) in the large-scale downstream processing. In this study, we aimed to use an efficient large-scale purification system as an alternative purification method for immunoaffinity chromatography. For this purpose, we suggested integrating non-affinity chromatographic methods of hydrophobic interaction chromatography (HIC) and size-exclusion chromatography (SEC) for cost-effective purification of rHBsAg expressed in P. pastoris. The optimization of such process is not trivial and straightforward since diverse molecular characteristics of expressed rHBsAg in each type of host cell cause different interactions in non-affinity chromatography processes. The working buffer composition and chromatography parameters are the most influential factors in hydrophobic interaction chromatography. The best result for lab-scale HIC was achieved by using ammonium sulfate buffer in 10% of saturation concentration in pH 7.0 with Butyl-S Sepharose 6 Fast Flow medium and with subsequent Tween-100 and urea elution. In this process, the recovery, purity, and total yield were about 84%, 82%, and 69%, respectively. By scaling-up the HIC and integrating it with Sephacryl S-400?SEC, we obtained highly pure, i.e.,?>?90%, rHBsAg virus-like particles (VLP).  相似文献   
14.
Highlights? Cardiac laterality involves Nodal modulating an antimotogenic Bmp activity ? The Nodal target Hyaluronan synthase 2 unilaterally dampens Bmp signaling activity ? Nonmuscle myosin II is positively regulated by Bmp within cardiac tissue ? High levels of nonmuscle myosin II activity reduce cardiac cell motility  相似文献   
15.
16.
Cigarette smoke has been directly implicated in the disease pathogenesis of a plethora of different human cancer subtypes, including breast cancers. The prevailing view is that cigarette smoke acts as a mutagen and DNA damaging agent in normal epithelial cells, driving tumor initiation. However, its potential negative metabolic effects on the normal stromal microenvironment have been largely ignored. Here, we propose a new mechanism by which carcinogen-rich cigarette smoke may promote cancer growth, by metabolically “fertilizing” the host microenvironment. More specifically, we show that cigarette smoke exposure is indeed sufficient to drive the onset of the cancer-associated fibroblast phenotype via the induction of DNA damage, autophagy and mitophagy in the tumor stroma. In turn, cigarette smoke exposure induces premature aging and mitochondrial dysfunction in stromal fibroblasts, leading to the secretion of high-energy mitochondrial fuels, such as L-lactate and ketone bodies. Hence, cigarette smoke induces catabolism in the local microenvironment, directly fueling oxidative mitochondrial metabolism (OXPHOS) in neighboring epithelial cancer cells, actively promoting anabolic tumor growth. Remarkably, these autophagic-senescent fibroblasts increased breast cancer tumor growth in vivo by up to 4-fold. Importantly, we show that cigarette smoke-induced metabolic reprogramming of the fibroblastic stroma occurs independently of tumor neo-angiogenesis. We discuss the possible implications of our current findings for the prevention of aging-associated human diseases and, especially, common epithelial cancers, as we show that cigarette smoke can systemically accelerate aging in the host microenvironment. Finally, our current findings are consistent with the idea that cigarette smoke induces the “reverse Warburg effect,” thereby fueling “two-compartment tumor metabolism” and oxidative mitochondrial metabolism in epithelial cancer cells.  相似文献   
17.
The use of biomaterials or microorganisms in PAHs degradation had presented an eye-catching performance. Pleurotus eryngii is a white rot fungus, which is easily isolated from the decayed woods in the tropical rain forest, used to determine the capability to utilize naphthalene, a two-ring polycyclic aromatic hydrocarbon as source of carbon and energy. In the meantime, biotransformation of naphthalene to intermediates and other by-products during degradation was investigated in this study. Pleurotus eryngii had been incubated in liquid medium formulated with naphthalene for 14 days. The presence of metabolites of naphthalene suggests that Pleurotus eryngii begin the ring cleavage by dioxygenation on C1 and C4 position to give 1,4-naphthaquinone. 1,4-Naphthaquinone was further degraded to benzoic acid, where the proposed terepthalic acid is absent in the cultured extract. Further degradation of benzoic acid by Pleurotus eryngii shows the existence of catechol as a result of the combination of decarboxylation and hydroxylation process. Unfortunately, phthalic acid was not detected in this study. Several enzymes, including manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase and 2,3-dioxygenase are enzymes responsible for naphthalene degradation. Reduction of naphthalene and the presence of metabolites in liquid medium showed the ability of Pleurotus eryngii to utilize naphthalene as carbon source instead of a limited glucose amount.  相似文献   
18.
Corynebacterium jeikeium, a resident of human skin, is often associated with multidrug resistant nosocomial infections in immunodepressed patients. C. jeikeium K411 belongs to mycolic acid-containing actinomycetes, the mycolata and contains a channel-forming protein as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent treated cell walls and in extracts of whole cells using organic solvents. A gene coding for a 40 amino acid long polypeptide possibly responsible for the pore-forming activity was identified in the known genome of C. jeikeium by its similar chromosomal localization to known porH and porA genes of other Corynebacterium strains. The gene jk0268 was expressed in a porin deficient Corynebacterium glutamicum strain. For purification temporarily histidine-tailed or with a GST-tag at the N-terminus, the homogeneous protein caused channel-forming activity with an average conductance of 1.25 nS in 1M KCl identical to the channels formed by the detergent extracts. Zero-current membrane potential measurements of the voltage dependent channel implied selectivity for anions. This preference is according to single-channel analysis caused by some excess of cationic charges located in the channel lumen formed by oligomeric alpha-helical wheels. The channel has a suggested diameter of 1.4 nm as judged from the permeability of different sized hydrated anions using the Renkin correction factor. Surprisingly, the genome of C. jeikeium contained only one gene coding for a cell wall channel of the PorA/PorH type found in other Corynebacterium species. The possible evolutionary relationship between the heterooligomeric channels formed by certain Corynebacterium strains and the homooligomeric pore of C. jeikeium is discussed.  相似文献   
19.
Neurodegeneration is an early event in the diabetic retina which may lead to diabetic retinopathy. One of the potential pathways in damaging retinal neurons is the activation of renin angiotensin system including angiotensin II type 1 receptor (AT1R) in the diabetic retina. The purpose of this study was to determine the effect of telmisartan, an AT1R blocker on retinal level of brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and tyrosine hydroxylase (TH), glutathione (GSH) and caspase activity in the diabetic rats. The dysregulated levels of these factors are known to cause neurodegeneration in diabetic retina. Three weeks streptozotocin induced diabetic rats were orally treated or untreated with telmisartan (10 mg/kg/day). After 4 weeks of treatments, the levels of BDNF and GSH were found to be increased systemically in the sera as well as in the retina of diabetic rats compared to untreated rats as measured by enzyme-linked immunosorbent assay and biochemical techniques (p < 0.05). The caspase-3 activity in the telmisartan treated diabetic retina was decreased compared to untreated diabetic rats (p < 0.05). Western blotting experiments showed the expression levels of BDNF, CNTF and TH were increased compared to untreated diabetic rats (p < 0.05). Thus, our findings show a beneficial effect of AT1R blocker telmisartan in efficiently increasing neurotrophic support, endogenous antioxidant GSH content, and decreasing signs of apoptosis in diabetic retina.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号