首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   3篇
  2023年   2篇
  2022年   1篇
  2020年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   5篇
  2013年   10篇
  2012年   13篇
  2011年   10篇
  2010年   3篇
  2009年   3篇
  2008年   12篇
  2007年   8篇
  2006年   9篇
  2005年   11篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2001年   5篇
  2000年   10篇
  1999年   2篇
  1997年   1篇
  1996年   3篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
排序方式: 共有152条查询结果,搜索用时 31 毫秒
61.
62.
Journal of Physiology and Biochemistry - In this study, the effects of melatonin (1 μM–1 mM) on pancreatic stellate cells (PSC) have been examined. Cell viability and...  相似文献   
63.
The use of the mammal target of rapamycin (mTOR) inhibitors has been consolidated as the therapy of election for preventing graft rejection in kidney transplant patients, despite their immunosuppressive activity is less strong than anti‐calcineurin agents like tacrolimus and cyclosporine A. Furthermore, as mTOR is widely expressed, rapamycin (a macrolide antibiotic produced by Streptomyces hygroscopicus) is recommended in patients presenting neoplasia due to its antiproliferative actions. Hence, we have investigated whether rapamycin presents side effects in the physiology of other cell types different from leucocytes, such as platelets. Blood samples were drawn from healthy volunteers and kidney transplant patients long‐term medicated with rapamycin: sirolimus and everolimus. Platelets were either loaded with fura‐2 or directly stimulated, and immunoassayed or fixed with Laemmli's buffer to perform the subsequent analysis of platelet physiology. Our results indicate that rapamycin evokes a biphasic time‐dependent alteration in calcium homeostasis and function in platelets from kidney transplant patients under rapamycin regime, as demonstrated by the reduction in granule secretion observed and subsequent impairment of platelet aggregation in these patients compared with healthy volunteers. Platelet count was also reduced in these patients, thus 41% of patients presented thrombocytopenia. All together our results show that long‐term administration of rapamycin to kidney transplant patients evokes alteration in platelet function.  相似文献   
64.
STIM1 acts as an endoplasmic reticulum Ca2 + sensor that communicates the filling state of the intracellular stores to the store-operated channels. In addition, STIM1 is expressed in the plasma membrane, with the Ca2 + binding EF-hand motif facing the extracellular medium; however, its role sensing extracellular Ca2 + concentrations in store-operated Ca2 + entry (SOCE), as well as the underlying mechanism remains unclear. Here we report that divalent cation entry stimulated by thapsigargin (TG) is attenuated by extracellular Ca2 + in a concentration-dependent manner. Expression of the Ca2 +-binding defective STIM1(D76A) mutant did not alter the surface expression of STIM1 but abolishes the regulation of divalent cation entry by extracellular Ca2 +. Orai1 and TRPC1 have been shown to play a major role in SOCE. Expression of the STIM1(D76A) mutant did not alter Orai1 phosphoserine content. TRPC1 silencing significantly attenuated TG-induced Mn2 + entry. Expression of the STIM1(K684,685E) mutant impaired the association of plasma membrane STIM1 with TRPC1, as well as the regulation of TG-induced divalent cation entry by extracellular Ca2 +, which suggests that TRPC1 might be involved in the regulation of divalent cation entry by extracellular Ca2 + mediated by plasma membrane-resident STIM1. Expression of the STIM1(D76A) or STIM1(K684,685E) mutants reduced store-operated divalent cation entry and resulted in loss of dependence on the extracellular Ca2 + concentration, providing evidence for a functional role of plasma membrane-resident STIM1 in the regulation of store-operated divalent cation entry, which at least involves the EF-hand motif and the C-terminal polybasic lysine-rich domain.  相似文献   
65.
STIM1 is a transmembrane protein essential for the activation of store-operated Ca2+ entry (SOCE), a major Ca2+ influx mechanism. STIM1 is either located in the endoplasmic reticulum, communicating the Ca2+ concentration in the stores to plasma membrane channels or in the plasma membrane, where it might sense the extracellular Ca2+ concentration. Plasma membrane-located STIM1 has been reported to mediate the SOCE sensitivity to extracellular Ca2+ through its interaction with Orai1. Here we show that plasma membrane lipid raft domains are essential for the regulation of SOCE by extracellular Ca2+. Treatment of platelets with the SERCA inhibitor thapsigargin (TG) induced Mn2+ entry, which was inhibited by increasing concentrations of extracellular Ca2+. Platelet treatment with methyl-β-cyclodextrin, which removes cholesterol and disrupts the lipid raft domains, impaired the inactivation of Ca2+ entry induced by extracellular Ca2+. Methyl-β-cyclodextrin also abolished translocation of STIM1 to the plasma membrane stimulated by treatment with TG and prevented TG-evoked co-immunoprecipitation between plasma membrane-located STIM1 and the Ca2+ permeable channel Orai1. These findings suggest that lipid raft domains are essential for the inactivation of SOCE by extracellular Ca2+ mediated by the interaction between plasma membrane-located STIM1 and Orai1.  相似文献   
66.

Background

All identified mammalian TRPC channels show a C-terminal calmodulin (CaM)- and inositol 1,4,5-trisphosphate receptors (IP3Rs)-binding (CIRB) site involved in the regulation of TRPC channel function.

Objectives

To assess the basis of CaM/IP3Rs binding to the CIRB site of TRPC6 and its role in platelet physiology.

Methods

Protein association was detected by co-immunoprecipitation and Western blotting, Ca2+ mobilization was measured by fluorimetric techniques and platelet function was analyzed by aggregometry.

Results

Co-immunoprecipitation of TRPC6 with CaM or the IP3Rs at different cytosolic free Ca2+ concentrations ([Ca2+]c) indicates that the association between these proteins is finely regulated by cytosolic Ca2+ via association of CaM and displacement of the IP3Rs at high [Ca2+]c. Thrombin-stimulated association of TRPC6 with CaM or the IP3Rs was sensitive to 2-APB and partially inhibited by dimethyl BAPTA loading, thus suggesting that the association between these proteins occurs through both Ca2+-dependent and -independent mechanisms. Incorporation of an anti-TRPC6 C-terminal antibody, whose epitope overlaps the CIRB region, impaired the dynamics of the association of TRPC6 with CaM and the IP3Rs, which lead to both inhibition and enhancement of thrombin- and thapsigargin-evoked Ca2+ entry in the presence of low or high, respectively, extracellular Ca2+ concentrations, as well as altered thrombin-evoked platelet aggregation.

Conclusions

Our results indicate that the CIRB site of TRPC6 plays an important functional role in platelets both modulating Ca2+ entry and aggregation through its interaction with CaM and IP3Rs.  相似文献   
67.
Primary hyperoxaluria type 1 (PH1) and type 2 (PH2) are rare genetic diseases that result from deficiencies in glyoxylate metabolism. The increased oxalate synthesis that occurs can lead to kidney stone formation, deposition of calcium oxalate in the kidney and other tissues, and renal failure. Hydroxyproline (Hyp) catabolism, which occurs mainly in the liver and kidney, is a prominent source of glyoxylate and could account for a significant portion of the oxalate produced in PH. To determine the sensitivity of mouse models of PH1 and PH2 to Hyp-derived oxalate, animals were fed diets containing 1% Hyp. Urinary excretions of glycolate and oxalate were used to monitor Hyp catabolism and the kidneys were examined to assess pathological changes. Both strains of knockout (KO) mice excreted more oxalate than wild-type (WT) animals with Hyp feeding. After 4 wk of Hyp feeding, all mice deficient in glyoxylate reductase/hydroxypyruvate reductase (GRHPR KO) developed severe nephrocalcinosis in contrast to animals deficient in alanine-glyoxylate aminotransferase (AGXT KO) where nephrocalcinosis was milder and with a lower frequency. Plasma cystatin C measurements over 4-wk Hyp feeding indicated no significant loss of renal function in WT and AGXT KO animals, and significant and severe loss of renal function in GRHPR KO animals after 2 and 4 wk, respectively. These data suggest that GRHPR activity may be vital in the kidney for limiting the conversion of Hyp-derived glyoxylate to oxalate. As Hyp catabolism may make a major contribution to the oxalate produced in PH patients, Hyp feeding in these mouse models should be useful in understanding the mechanisms associated with calcium oxalate deposition in the kidney.  相似文献   
68.
Antibodies against epidermal growth factor receptor (EGFR)--cetuximab and panitumumab--are widely used to treat colorectal cancer. Unfortunately, patients eventually develop resistance to these agents. We describe an acquired EGFR ectodomain mutation (S492R) that prevents cetuximab binding and confers resistance to cetuximab. Cells with this mutation, however, retain binding to and are growth inhibited by panitumumab. Two of ten subjects studied here with disease progression after cetuximab treatment acquired this mutation. A subject with cetuximab resistance harboring the S492R mutation responded to treatment with panitumumab.  相似文献   
69.
In this study we have investigated the effect of ethanol on [Ca2+]c by microfluorimetry and glutamate secretion using an enzyme-linked system, in rat hippocampal astrocytes in culture. Our results show that ethanol (1-200 mM) evoked a dose-dependent increase in glutamate secretion. 50 mM ethanol, a concentration within the range of blood alcohol levels in intoxicated humans, induced a release of Ca2+ from intracellular stores in the form of oscillations. Ca2+-mobilizing effect of ethanol was not prevented by preincubation of cells in the presence of 2 mM of the antioxidant dithiothreitol. Ethanol-evoked glutamate secretion was reduced when extracellular Ca2+ was omitted (medium containing 0.5 mM EGTA) and following preincubation of astrocytes in the presence of the intracellular Ca2+ chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetraacetoxy-methyl ester (10 microM). Preincubation of astrocytes in the presence of 2 mM of the antioxidant dithiothreitol significantly reduced ethanol-evoked glutamate secretion. Finally, preincubation of astrocytes in the presence of bafilomycin (50 nM) significantly reduced ethanol-induced neurotransmitter release, indicating that exocytosis is involved in glutamate secretion. In conclusion, our results suggest that ethanol mobilizes Ca2+ from intracellular stores, and stimulates a Ca2+-dependent glutamate secretion, probably involving reactive oxygen species production, and therefore creating a situation potentially leading to neurotoxicity in the hippocampus.  相似文献   
70.
The effects of the thiol reagent, phenylarsine oxide (PAO, 10(-5)-10(-3) M ), a membrane-permeable trivalent arsenical compound that specifically complexes vicinal sulfhydryl groups of proteins to form stable ring structures, were studied by monitoring intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. PAO increased [Ca2+]i by mobilizing calcium from intracellular stores, since this increase was observed in the absence of extracellular calcium. PAO also prevented the CCK-8-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF-4). In addition to the effects of PAO on calcium mobilization, it caused a significant increase in amylase secretion and reduced the secretory response to either CCK-8 or AlF-4. The effects of PAO on both [Ca2+]i and amylase release were reversed by the sulfhydryl reducing agent, dithiothreitol (2 mM). Pretreatment of acinar cells with high concentration of ryanodine (50 microM) reduced the PAO-evoked calcium release. However, PAO was still able to release a small fraction of Ca2+ from acinar cells in which agonist-releasable Ca2+ pools had been previously depleted by thapsigargin (0.5 microM) and ryanodine receptors were blocked by 50 microM ryanodine. We conclude that, in pancreatic acinar cells, PAO mainly releases Ca2+ from the ryanodine-sensitive calcium pool and consequently induces amylase secretion. These effects are likely to be due to the oxidizing effects of this compound.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号