首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   2篇
  117篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   11篇
  2011年   10篇
  2010年   3篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   6篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
51.
52.
Acetobacter pasteurianus LMG 1635 was studied for its potential application in the enantioselective oxidation of alcohols. Batch cultivation led to accumulation of acetic acid and loss of viability. These problems did not occur in carbon-limited chemostat cultures (dilution rate = 0.05 h–1) grown on mineral medium supplemented with ethanol, L-lactate or acetate. Nevertheless, biomass yields were extremely low in comparison to values reported for other bacteria. Cells exhibited high oxidation rates with ethanol and racemic glycidol (2,3-epoxy-1-propanol). Ethanol- and glycidol-dependent oxygen-uptake capacities of ethanol-limited cultures were higher than those of cultures grown on lactate or acetate. On all three carbon sources, A. pasteurianus expressed NAD-dependent and dye-linked ethanol dehydrogenase activity. Glycidol oxidation was strictly dye-linked. In contrast to the NAD-dependent ethanol dehydrogenase, the activity of dye-linked alcohol dehydrogenase depended on the carbon source and was highest in ethanol-grown cells. Cell suspensions from chemostat cultures could be stored at 4°C for over 30 days without significant loss of ethanol- and glycidol-oxidizing activity. It is concluded that ethanol-limited cultivation provides an attractive system for production of A. pasteurianus biomass with a high and stable alcohol-oxidizing activity.  相似文献   
53.
Aerial parts of Apium nodiflorum collected in Portugal and Italy were submitted to hydrodistillation; also a supercritical fluid extract was obtained from Italian plants. The extracts were analyzed by GC and GC/MS. Both essential oils, obtained from Portuguese and Italian plants, posses high content of phenylpropanoids (51.6 vs. 70.8%); in the former, the percentage split in myristicin (29.1%) and dillapiol (22.5%), whereas in the latter, the total percentage is only of dillapiol (70.8%). The co-occurrence of myristicin and dillapiol is frequent because dillapiol results from enzymatic methoxylation of myristicin. Antimicrobial activity of phenylpropanoids has been patented, what suggest the potential of plants with high amounts of these compounds. Minimal inhibitory concentration (MIC) and minimal lethal concentration, determined according to NCCLS, were used to evaluate the antifungal activity of the essential oils against yeasts, Aspergillus species and dermatophytes. Essential oils exhibited higher antifungal activity than other Apiaceae against dermatophytes, with MIC ranging from 0.04 to 0.32?μl/ml. These results support the potential of A. nodiflorum oil in the treatment of dermatophytosis and candidosis.  相似文献   
54.
During early mouse development, the TGFβ-related protein Nodal specifies the organizing centers that control the formation of the anterior-posterior (A-P) axis. EGF-CFC proteins are important components of the Nodal signaling pathway, most likely by acting as Nodal coreceptors. However, the extent to which Nodal activity depends on EGF-CFC proteins is still debated. Cripto is the earliest EGF-CFC gene expressed during mouse embryogenesis and is involved in both A-P axis orientation and mesoderm formation. To investigate the relation between Cripto and Nodal in the early mouse embryo, we removed the Nodal antagonist Cerberus 1 (Cer1) and simultaneously Cripto, by generating Cer1;Cripto double mouse mutants. We observed that two thirds of the Cer1;Cripto double mutants are rescued in processes that are severely compromised in Cripto/ embryos, namely A-P axis orientation, anterior mesendoderm and posterior neuroectoderm formation. The observed rescue is strongly reduced in Cer1;Cripto;Nodal triple mutants, suggesting that Nodal can signal extensively in the absence of Cripto, if Cer1 is also inhibited. This signaling activity drives A-P axis positioning. Our results provide evidence for the existence of Cripto-independent signaling mechanisms, by which Nodal controls axis specification in the early mouse embryo.  相似文献   
55.
The redox properties of a periplasmic triheme cytochrome, PpcB from Geobacter sulfurreducens, were studied by NMR and visible spectroscopy. The structure of PpcB was determined by X-ray diffraction. PpcB is homologous to PpcA (77% sequence identity), which mediates cytoplasmic electron transfer to extracellular acceptors and is crucial in the bioenergetic metabolism of Geobacter spp. The heme core structure of PpcB in solution, probed by 2D-NMR, was compared to that of PpcA. The results showed that the heme core structures of PpcB and PpcA in solution are similar, in contrast to their crystal structures where the heme cores of the two proteins differ from each other. NMR redox titrations were carried out for both proteins and the order of oxidation of the heme groups was determined. The microscopic properties of PpcB and PpcA redox centers showed important differences: (i) the order in which hemes become oxidized is III-I-IV for PpcB, as opposed to I-IV-III for PpcA; (ii) the redox-Bohr effect is also different in the two proteins. The different redox features observed between PpcB and PpcA suggest that each protein uniquely modulates the properties of their co-factors to assure effectiveness in their respective metabolic pathways. The origins of the observed differences are discussed.  相似文献   
56.
The chemokine stromal cell-derived factor-1 (SDF-1) plays a critical role in mobilizing precursor cells in the bone marrow and is essential for efficient vascular regeneration and repair. We recently reported that calcium augments the expression of chemokine receptor CXCR4 and enhances the angiogenic potential of bone marrow derived cells (BMCs). Neovascularization is impaired by aging therefore we suggested that aging may cause defects of CXCR4 expression and cellular responses to calcium. Indeed we found that both the basal and calcium-induced surface expression of CXCR4 on BMCs was significantly reduced in 25-month-old mice compared with 2-month-old mice. Reduced Ca-induced CXCR4 expression in BMC from aged mice was associated with defective calcium influx. Diminished CXCR4 surface expression in BMC from aged mice correlated with diminished neovascularization in an ischemic hindlimb model with less accumulation of CD34(+) progenitor cells in the ischemic muscle with or without local overexpression of SDF-1. Intravenous injection of BMCs from old mice homed less efficiently to ischemic muscle and stimulated significantly less neovascularization compared with the BMCs from young mice. Transplantation of old BMCs into young mice did not reconstitute CXCR4 functions suggesting that the defects were not reversible by changing the environment. We conclude that defects of basal and calcium-regulated functions of the CXCR4/SDF-1 axis in BMCs contribute significantly to the age-related loss of vasculogenic responses.  相似文献   
57.
Coffee is the main source of chlorogenic acid in the human diet, and it contains several chlorogenic acid isomers, of which the 5‐caffeoylquinic acid (5‐CQA) is the predominant isomer. Because there are no available data about the action of chlorogenic acids from instant coffee on hepatic glucose‐6‐phosphatase (G‐6‐Pase) activity and blood glucose levels, these effects were investigated in rats. The changes on G‐6‐Pase activity and liver glucose output induced by 5‐CQA were also investigated. Instant coffee extract with high chlorogenic acids content (37.8%) inhibited (p < 0.05) the G‐6‐Pase activity of the hepatocyte microsomal fraction in a dose‐dependent way (up to 53), but IV administration of this extract did not change the glycaemia (p > 0.05). Similarly, 5‐CQA (1 mM) reduced (p < 0.05) the activity of microsomal G‐6‐Pase by about 40%, but had no effect (p > 0.05) on glucose output arising from glycogenolysis in liver perfusion. It was concluded that instant coffee extract with high content of chlorogenic acids inhibited hepatic G‐6‐Pase in vitro, but failed to reduce the glycaemia probably because the coffee chlorogenic acids did not reach enough levels within the hepatocytes to inhibit the G‐6‐Pase and reduce the liver glucose output. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
58.
59.
Fisetin is a flavonoid dietary ingredient found in the smoke tree (Cotinus coggyria) and in several fruits and vegetables. The effects of fisetin on glucose metabolism in the isolated perfused rat liver and some glucose‐regulating enzymatic activities were investigated. Fisetin inhibited glucose, lactate, and pyruvate release from endogenous glycogen. Maximal inhibitions of glycogenolysis (49%) and glycolysis (59%) were obtained with the concentration of 200 µM. The glycogenolytic effects of glucagon and dinitrophenol were suppressed by fisetin 300 µM. No significant changes in the cellular contents of AMP, ADP, and ATP were found. Fisetin increased the cellular content of glucose 6‐phosphate and inhibited the glucose 6‐phosphatase activity. Gluconeogenesis from lactate and pyruvate or fructose was inhibited by fisetin 300 µM. Pyruvate carboxylation in isolated intact mitochondria was inhibited (IC50 = 163.10 ± 12.28 µM); no such effect was observed in freeze‐thawing disrupted mitochondria. It was concluded that fisetin inhibits glucose release from the livers in both fed and fasted conditions. The inhibition of pyruvate transport into the mitochondria and the reduction of the cytosolic NADH‐NAD+ potential redox could be the causes of the gluconeogenesis inhibition. Fisetin could also prevent hyperglycemia by decreasing glycogen breakdown or blocking the glycogenolytic action of hormones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
60.
Periplasmic sensor domains from two methyl-accepting chemotaxis proteins from Geobacter sulfurreducens (encoded by genes GSU0935 and GSU0582) were expressed in Escherichia coli. The sensor domains were isolated, purified, characterized in solution, and their crystal structures were determined. In the crystal, both sensor domains form swapped dimers and show a PAS-type fold. The swapped segment consists of two helices of about 45 residues at the N terminus with the hemes located between the two monomers. In the case of the GSU0582 sensor, the dimer contains a crystallographic 2-fold symmetry and the heme is coordinated by an axial His and a water molecule. In the case of the GSU0935 sensor, the crystals contain a non-crystallographic dimer, and surprisingly, the coordination of the heme in each monomer is different; monomer A heme has His-Met ligation and monomer B heme has His-water ligation as found in the GSU0582 sensor. The structures of these sensor domains are the first structures of PAS domains containing covalently bound heme. Optical absorption, electron paramagnetic resonance and NMR spectroscopy have revealed that the heme groups of both sensor domains are high-spin and low-spin in the oxidized and reduced forms, respectively, and that the spin-state interconversion involves a heme axial ligand replacement. Both sensor domains bind NO in their ferric and ferrous forms but bind CO only in the reduced form. The binding of both NO and CO occurs via an axial ligand exchange process, and is fully reversible. The reduction potentials of the sensor domains differ by 95 mV (− 156 mV and − 251 mV for sensors GSU0582 and GSU0935, respectively). The swapped dimerization of these sensor domains and redox-linked ligand switch might be related to the mechanism of signal transduction by these chemotaxis proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号