首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   962篇
  免费   65篇
  2022年   5篇
  2021年   18篇
  2020年   8篇
  2019年   10篇
  2018年   18篇
  2017年   16篇
  2016年   19篇
  2015年   34篇
  2014年   53篇
  2013年   65篇
  2012年   76篇
  2011年   61篇
  2010年   41篇
  2009年   34篇
  2008年   48篇
  2007年   54篇
  2006年   47篇
  2005年   57篇
  2004年   45篇
  2003年   42篇
  2002年   38篇
  2001年   12篇
  2000年   12篇
  1999年   13篇
  1998年   3篇
  1997年   6篇
  1995年   5篇
  1994年   8篇
  1993年   9篇
  1992年   10篇
  1991年   11篇
  1990年   9篇
  1989年   19篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1983年   7篇
  1982年   7篇
  1980年   3篇
  1979年   14篇
  1978年   5篇
  1977年   10篇
  1976年   8篇
  1974年   5篇
  1973年   4篇
  1967年   2篇
  1966年   8篇
  1965年   9篇
排序方式: 共有1027条查询结果,搜索用时 15 毫秒
21.
EPR spectra of oxidized R. gelatinosa HiPIP demonstrate two kinds of temperature dependent changes which can be analyzed in terms of an excited state at 142 ± 10cm?1 and a second excited state at 490 ± 100cm?1. These states represent further verification of antiferromagnetic exchange among the 4 irons in this tetranuclear cluster, with a value for the coupling constant of J = ?44cm?1. Aside from resonance Raman spectroscopic results, this is the first report of a ladder of excited states predicted for exchange coupled ions.  相似文献   
22.
Two distinct ferredosin-type iron-sulfur centers (designated as Centers S-1 and S-2) are present in the soulble succinate dehydrogenase in approximately equivalent concentrations to that of bound flavin. Both Centers S-1 and S-2 exhibit electron paramagnetic resonance absorbance in the reduced state at the same magnetic field (gz = 2.03, gy = 1.93, and gx = 1.91) with similar line shape. Center S-2 is reducible only chemically with dithionite and remains oxidized under physiological conditions. Thus, its functional role is unknown; however, thermodynamic and EPR characterization of this iron-sulfur center has revealed important molecular events related to this dehydrogenase. The midpoint potentials of Centers S-1 and S-2 determined in the soluble succinate dehydrogenase preparations are -5 +/- 15 mV and -400 +/- 15 mV, respectively, while corresponding midpoint potentials determined in particulate preparations, such as succinate-cytochrome c reductase or succinate-ubiquinone reductase, are 0 +/- 15 mV and -260 +/- 15 mV. Reconstitution of soluble succinate dehydrogenase with the cytochrome b-c1 complex is accompanied by a reversion of the Center S-I midpoint from -400 +/- 15 mV to -250 +/- 15 mV with a concomitant restoration of antimycin A-sensitive succinate-cytochrome c reductase activity. There observations indicate that, during the reconstitution process, Center S-I is restored to its original molecular environment. In the reconstitutively active succinate dehydrogenase, the relaxation time of Center S-2 is much shorter than that of S-1, thus Center S-2 spectra are well discernible only below 20 K (at 1 milliwatt of power), while the resonance absorbance of Center S-1 is detectable at higher temperatures and readily saturates below 15 K. Over a wide temperature range the power saturation of Center S-1 resonance absorbance is relieved by Center S-2 in the paramagnetic state, and the Center S-2 central resonance absorbance is broadened by Center S-1 spins, due to a spin-spin interaction between these centers. These observations indicate an adjacent location of these centers in the enzyme molecule. In reconstitutively inactive enzymes, subtle modification of the enzyme structure appears to shift the temperature dependence of Center S-2 relaxation to the higher temperature. Thus the EPR signals of Center S-2 are also detectable at higher temperature. In this system a splitting of the central peak of the Center S-2 spectrum due to spin-spin interaction was observed at extremely low temperatures, while this was not observed in reconstitutively active enzymes or in paritculate preparations. This spin-spin interaction phenomena of inactive enzymes disappeared upon chemical reactivation with concomitant appearance of the reconstitutive activity. These observations provide a close correlation between the molecular integrity of the enzyme and its physiological function.  相似文献   
23.
Cholecystokinin-8 like immunoreactivity (CCK-8 IR) was measured in different brain regions of rats with experimental liver cirrhosis. A statistically significant reduction of CCK-8 content was observed in the hypothalamus of cirrhotic rats. No significant modification of brain CCK fractionation pattern was observed in treated animals as compared to controls. The decrease of CCK-8 IR parallels the recently reported hypothalamic depletion of beta endorphin in cirrhotic rats confirming that central neuropeptides are affected by chronic liver failure.  相似文献   
24.
Summary The flavoprotein NADPH-adrenodoxin reductase and the iron sulfur protein adrenodoxin function as a short electron transport chain which donates electrons one-at-a-time to adrenal cortex mitochondrial cytochromes P-450. The soluble adrenodoxin acts as a mobile one-electron shuttle, forming a complex first with NADPH-reduced adrenodoxin reductase from which it accepts an electron, then dissociating, and finally reassociating with and donating an electron to the membrane-bound cytochrome P-450 (Fig. 9). Dissociation and reassociation with flavoprotein then allows a second cycle of electron transfers. A complex set of factors govern the sequential protein-protein interactions which comprise this adrenodoxin shuttle mechanism; among these factors, reduction of the iron sulfur center by the flavin weakens the adrenodoxinadrenodoxin reductase interaction, thus promoting dissociation of this complex to yield free reduced adrenodoxin. Substrate (cholesterol) binding to cytochrome P-450scc both promotes the binding of the free adrenodoxin to the cytochrome, and alters the oxidation-reduction potential of the heme so as to favor reduction by adrenodoxin. The cholesterol binding site on cytochrome P-450scc appears to be in direct communication with the hydrophobic phospholipid milieu in which this substrate is dissolved. Specific effects of both phospholipid headgroups and fatty acyl side-chains regulate the interaction of cholesterol with its binding side. Cardiolipin is an extremely potent positive effector for cholesterol binding, and evidence supports the existence of a specific effector lipid binding site on cytochrome P.450scc to which this phospho-lipid binds.  相似文献   
25.
Immune dysregulation is a hallmark of patients infected by SARS-CoV2 and the balance between immune reactivity and tolerance is a key determinant of all stages of infection, including the excessive inflammatory state causing the acute respiratory distress syndrome. The kynurenine pathway (KP) of tryptophan (Trp) metabolism is activated by pro-inflammatory cytokines and drives mechanisms of immune tolerance. We examined the state of activation of the KP by measuring the Kyn:Trp ratio in the serum of healthy subjects (n = 239), and SARS-CoV2-negative (n = 305) and -positive patients (n = 89). Patients were recruited at the Emergency Room of St. Andrea Hospital (Rome, Italy). Kyn and Trp serum levels were assessed by HPLC/MS-MS. Compared to healthy controls, both SARS-CoV2-negative and -positive patients showed an increase in the Kyn:Trp ratio. The increase was larger in SARS-CoV2-positive patients, with a significant difference between SARS-CoV2-positive and -negative patients. In addition, the increase was more prominent in males, and positively correlated with age and severity of SARS-CoV2 infection, categorized as follows: 1 = no need for intensive care unit (ICU); 2 ≤ 3 weeks spent in ICU; 3 ≥ 3 weeks spent in ICU; and 4 = death. The highest Kyn:Trp values were found in SARS-CoV2-positive patients with severe lymphopenia. These findings suggest that the Kyn:Trp ratio reflects the level of inflammation associated with SARS-CoV2 infection, and, therefore, might represent a valuable biomarker for therapeutic intervention.  相似文献   
26.
In the present study we tested the ability of different antioxidant agents, used alone or in combination, to reduce the reactive oxygen species (ROS) levels and to increase the glutathione peroxidase (GPx) activity. Moreover, we tested the ability of such antioxidant agents to reduce the serum levels of proinflammatory cytokines IL-6 and TNF &#102 . Fifty-six advanced stage cancer patients with tumors at different sites were included in the study: they were mainly stage III (12.5%) and stage IV (82.1%). The study was divided into two phases. In the 1 st phase 28 patients were divided into five groups and a single different antioxidant agent was administered to each group. The selected antioxidant agents were: alpha lipoic acid or carboxycysteine-lysine salt, amifostine, reduced glutathione, vitamin A plus vitamin E plus Vitamin C. In the 2 nd phase of the study 28 patients were divided into five groups and a combination of two different antioxidant agents was administered to each group. The antioxidant treatment was administered for 10 consecutive days. The patients were studied at baseline and after antioxidant treatment. Our results show that all single antioxidants tested were effective in reducing the ROS levels and three of them in increasing GPx activity, too. Among the combinations of antioxidant agents, three were effective in reducing ROS, while three were effective in increasing GPx activity (arm 4 was effective in both instances). Comprehensively, the "antioxidant treatment" was found to be effective both on ROS levels and GPx activity. Moreover, the antioxidant treatment was able to reduce serum levels of IL-6 and TNF &#102 . Furthermore, a correlation was shown between the Eastern Cooperative Oncology Group Performance Status of patients and blood levels of ROS, GPx activity, serum levels of proinflammatory cytokines.  相似文献   
27.
The complex history of the Mediterranean region illustrates how ancient and recent phenomena are closely associated with species distribution and the creation of phylogeographic divisions within Mediterranean flora. A good model to explore the genetic consequences of fragmentation can be found in Centaurea cineraria and its close relatives. We applied simple sequence repeat molecular markers to a dense population sampling throughout the distribution area of all C. cineraria taxa to study how fragmentation has altered the genetic structure and distribution of C. cineraria. The average gene diversity (He) was 0.286, and the average allelic richness (Ar) was 3.65 and ranged from 2.15 (C. gymnocarpa) to 5.25 (C. busambarensis). The FIS averaged a relatively high 0.223, ranging from ? 0.724 in C. aeolica subsp. aeolica to 0.589 in C. leucadea. Our results indicate that habitat fragmentation over several generations reduced heterozygosity due to random genetic drift in populations of C. cineraria. This heterozygosity erosion becomes more severe when the inbreeding coefficient is positive and the outcrossing rates show a significant increase. The results observed for outcrossing rates and inbreeding coefficient could also indirectly support the possibility of disrupted gene flow or mating pattern changes in fragmented C. cineraria populations.  相似文献   
28.
Abstract

1-O-Acetyl-2-deoxy-3,5-di-O-toluoyl-4-thio-d-erythro-pentofuranose and 2-deoxy-1,3,5-tri-O-acetyl-4-thio-l-threo-pentofuranose were coupled with 5-azacytosine to obtain α and β anomers of nucleosides.  相似文献   
29.
The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, β-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes’ expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage β-1,3;1,4 glucan synthase celA together with the β-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis.  相似文献   
30.

Background

CD44, a transmembrane glycoprotein, is a major receptor for extracellular proteins involved in invasion and metastasis of human cancers. We have previously demonstrated that the novel Gemini vitamin D analog BXL0124 [1α,25-dihydroxy-20R-21(3-hydroxy-3-deuteromethyl-4,4,4-trideuterobutyl)-23-yne-26,27-hexafluro-cholecalciferol] repressed CD44 expression in MCF10DCIS.com basal-like human breast cancer cells and inhibited MCF10DCIS xenograft tumor growth. In the present study, we investigated potential factors downstream of CD44 and the biological role of CD44 repression by BXL0124 in MCF10DCIS cells.

Methods and Findings

The treatment with Gemini vitamin D BXL0124 decreased CD44 protein level, suppressed STAT3 signaling, and inhibited invasion and proliferation of MCF10DCIS cells. The interaction between CD44 and STAT3 was determined by co-immunoprecipitation. CD44 forms a complex with STAT3 and Janus kinase 2 (JAK2) to activate STAT3 signaling, which was inhibited by BXL0124 in MCF10DCIS cells. The role of CD44 in STAT3 signaling and invasion of MCF10DCIS cells was further determined by the knockdown of CD44 using small hairpin RNA in vitro and in vivo. MCF10DCIS cell invasion was markedly decreased by the knockdown of CD44 in vitro. The knockdown of CD44 also significantly decreased mRNA expression levels of invasion markers, matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA), in MCF10DCIS cells. In MCF10DCIS xenograft tumors, CD44 knockdown decreased tumor size and weight as well as invasion markers.

Conclusions

The present study identifies STAT3 as an important signaling molecule interacting with CD44 and demonstrates the essential role of CD44-STAT3 signaling in breast cancer invasion. It also suggests that repression of CD44-STAT3 signaling is a key molecular mechanism in the inhibition of breast cancer invasion by the Gemini vitamin D analog BXL0124.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号