首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   5篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   8篇
  2012年   7篇
  2011年   6篇
  2010年   8篇
  2009年   7篇
  2008年   5篇
  2007年   9篇
  2006年   7篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1993年   2篇
  1990年   1篇
排序方式: 共有100条查询结果,搜索用时 203 毫秒
61.
Insect osmoregulation is subject to highly sophisticated endocrine control. In Drosophila, both Drosophila kinin and tyramine act on the Malpighian (renal) tubule stellate cell to activate chloride shunt conductance, and so increase the fluid production rate. Drosophila kinin is known to act through intracellular calcium, but the mode of action of tyramine is not known. Here, we used a transgenically encoded GFP::apoaequorin translational fusion, targeted to either principal or stellate cells under GAL4/UAS control, to demonstrate that tyramine indeed acts to raise calcium in stellate, but not principal cells. Furthermore, the EC(50) tyramine concentration for half-maximal activation of the intracellular calcium signal is the same as that calculated from previously published data on tyramine-induced increase in chloride flux. In addition, tyramine signalling to calcium is markedly reduced in mutants of NorpA (a phospholipase C) and itpr, the inositol trisphosphate receptor gene, which we have previously shown to be necessary for Drosophila kinin signalling. Therefore, tyramine and Drosophila kinin signals converge on phospholipase C, and thence on intracellular calcium; and both act to increase chloride shunt conductance by signalling through itpr. To test this model, we co-applied tyramine and Drosophila kinin, and showed that the calcium signals were neither additive nor synergistic. The two signalling pathways thus represent parallel, independent mechanisms for distinct tissues (nervous and epithelial) to control the same aspect of renal function.  相似文献   
62.
Mitochondria must adjust both their intracellular location and their metabolism in order to balance their output to the needs of the cell. Here we show by the proteomic technique of time series difference gel electrophoresis that a major result of neuroendocrine stimulation of the Drosophila renal tubule is an extensive remodeling of the mitochondrial matrix. By generating Drosophila that were transgenic for both luminescent and fluorescent mitochondrial calcium reporters, it was shown that mitochondrial calcium tracked the slow (minutes) but not the rapid (<1 s) changes in cytoplasmic calcium and that this resulted in both increased mitochondrial membrane polarization and elevated cellular ATP levels. The selective V-ATPase inhibitor, bafilomycin, further enhanced ATP levels, suggesting that the apical plasma membrane V-ATPase is a major consumer of ATP. Both the mitochondrial calcium signal and the increase in ATP were abolished by the mitochondrial calcium uniporter blocker Ru360. By using both mitochondrial calcium imaging and the potential sensing dye JC-1, the apical mitochondria of principal cells were found to be selectively responsive to neuropeptide signaling. As the ultimate target is the V-ATPase in the apical plasma membrane, this selective activation of mitochondria is clearly adaptive. The results highlight the dynamic nature and both spatial and temporal heterogeneity of calcium signaling possible in differentiated, organotypic cells and provide a new model for neuroendocrine control of V-ATPase.  相似文献   
63.
Collagen VI, a microfibrillar protein found in virtually all connective tissues, is composed of three distinct subunits, alpha1(VI), alpha2(VI), and alpha3(VI), which associate intracellularly to form triple helical heterotrimeric monomers then dimers and tetramers. The secreted tetramers associate end-to-end to form beaded microfibrils. Although the basic steps in assembly and the structure of the tetramers and microfibrils are well defined, details of the interacting protein domains involved in assembly are still poorly understood. To explore the role of the C-terminal globular regions in assembly, alpha3(VI) cDNA expression constructs with C-terminal truncations were stably transfected into SaOS-2 cells. Control alpha3(VI) N6-C5 chains with an intact C-terminal globular region (subdomains C1-C5), and truncated alpha3(VI) N6-C1, N6-C2, N6-C3, and N6-C4 chains, all associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, dimers and tetramers, which were secreted. These data demonstrate that subdomains C2-C5 are not required for monomer, dimer or tetramer assembly, and suggest that the important chain selection interactions involve the C1 subdomains. In contrast to tetramers containing control alpha3(VI) N6-C5 chains, tetramers containing truncated alpha3(VI) chains were unable to associate efficiently end-to-end in the medium and did not form a significant extracellular matrix, demonstrating that the alpha3(VI) C5 domain plays a crucial role in collagen VI microfibril assembly. The alpha3(VI) C5 domain is present in the extracellular matrix of SaOS-2 N6-C5 expressing cells and fibroblasts demonstrating that processing of the C-terminal region of the alpha3(VI) chain is not essential for microfibril formation.  相似文献   
64.
Secondary analysis of the trends and correlates of consanguinity in the Palestinian Territories was conducted using data from two separate surveys in 1995 and 2004. The analysis was conducted on ever-married women aged 15-54 who were asked about their relation to their husband in both surveys. A total of 16,197 women in 1995 and 4971 women in 2004 were successfully interviewed. Consanguinity was found to be widely practised in the Palestinian Territories with rates of total consanguinity reaching 45% of all marriages in 2004. Analysis was conducted with the data from the two surveys combined and this indicated that consanguinity was significantly decreasing with time after controlling for other variables. Age of the women, their age at marriage, region and locality type they lived in and their standard of living were all found to be significant predictors of consanguinity. The education level of the women was not found to be significant. After controlling for the survey year, women's labour force status was also found to be a non-significant predictor of consanguinity. Although consanguinity was found to be significantly decreasing slowly with time after controlling for other variables, the future trends of consanguinity are not known due to the unstable political situation in the territories, which could have a direct effect on marriage patterns.  相似文献   
65.
This paper proposes a refined hypothesis of evolution for the tropical Indo-Pacific nudibranch genus Halgerda . Numerous specimens from 31 species were examined anatomically and literature from four additional species was reviewed, bringing to 33 the ingroup taxa. Fifty-three characters were considered from these examinations. The outgroup Asteronotus was used to polarize the characters. The phylogeny obtained from the analysis of the characters supports the hypothesis that Halgerda is a monophyletic group. A species previously placed with the genus Sclerodoris is examined and determined to be a member of the genus Halgerda . Phylogenetic analysis places this species, H. paliensis , as a basal member of the genus . Halgerda paliensis appears to be restricted to the Hawaiian Islands. Specimens previously identified as Sclerodoris paliensis from the Marshall Islands actually represent H. dalanghita Fahey & Gosliner, 1999. A new species, Halgerda onna , is described and presented as the sister taxon to a basal member of the genus. A range and depth extension of a previously described species, H. malesso , is presented. The present phylogeny is then compared to previous studies, in particular those of Fahey & Gosliner (1999a,b) .  相似文献   
66.
Dopaminergic neurodegeneration during Parkinson disease (PD) involves several pathways including proteasome inhibition, alpha-synuclein (alpha-syn) aggregation, mitochondrial dysfunction, and glutathione (GSH) depletion. We have utilized a systems biology approach and built a dynamic model to understand and link the various events related to PD pathophysiology. We have corroborated the modeling data by examining the effects of alpha-syn expression in the absence and presence of proteasome inhibition on GSH metabolism in dopaminergic neuronal cultures. We report here that the expression of the mutant A53T form of alpha-syn is neurotoxic and causes GSH depletion in cells after proteasome inhibition, compared to wild-type alpha-syn-expressing cells and vector control. Modeling data predicted that GSH depletion in these cells was due to ATP loss associated with mitochondrial dysfunction. ATP depletion elicited by combined A53T expression and proteasome inhibition results in decreased de novo synthesis of GSH via the rate-limiting enzyme gamma-glutamyl cysteine ligase. Based on these data and other recent reports, we propose a novel dynamic model to explain how the presence of mutated alpha-syn protein or proteasome inhibition may individually impact on mitochondrial function and in combination result in alterations in GSH metabolism via enhanced mitochondrial dysfunction.  相似文献   
67.
cGMP signaling regulates epithelial fluid transport by Drosophila Malpighian (renal) tubules. In order to directly evaluate the importance of cGMP-degrading phosphodiesterases (PDEs) in epithelial transport, bovine PDE5 (a bona fide cGMP-PDE), was ectopically expressed in vivo. Transgenic UAS-PDE5 Drosophila were generated, and PDE5 expression was driven in specified tubule cells in vivo by cell-specific GAL4 drivers. Targeted expression was verified by PCR and Western blotting. Immunolocalization of PDE5 in tubule confirmed specificity of expression and demonstrated localization to the apical plasma membrane. GAL4/UAS-PDE5 tubules exhibit increased cG-PDE activity and reduced basal cGMP levels compared with control lines. We show that wild-type and control tubules are sensitive to the PDE5-specific inhibitor sildenafil and that GAL4/UAS-PDE5 tubules display enhanced sensitivity to sildenafil, compared with controls. cGMP content in GAL4/UAS-PDE5 tubules is restored to control levels by treatment with sildenafil. Thus bovine PDE5 retains cGMP-degrading activity and inhibitor sensitivity when expressed in Drosophila. Expression of PDE5 in tubule principal cells results in an epithelial phenotype, reducing rates of basal and cGMP-/Cardioaccelatory peptide(2b)(CAP(2b))-stimulated fluid transport. Furthermore, inhibition of PDE5 activity by sildenafil restores basal and cGMP-stimulated fluid transport rates to control levels. However, corticotrophin releasing factor-like-stimulated transport, which is activated by cAMP signaling, was unaffected, confirming that only cGMP-stimulated signaling events in tubule are compromised by overexpression of PDE5. Successful ectopic expression of a vertebrate cG-PDE in Drosophila has shown that cG-PDE has a critical role in tubule function in vivo and that cG-PDE function is conserved across evolution. The transgene also provides a generic tool for the analysis of cGMP signaling in Drosophila.  相似文献   
68.
A Drosophila gene (capability, capa) at 99D on chromosome 3R potentially encodes three neuropeptides: GANMGLYAFPRV-amide (capa-1), ASGLVAFPRV-amide (capa-2), and TGPSASSGLWGPRL-amide (capa-3). Capa-1 and capa-2 are related to the lepidopteran hormone cardioacceleratory peptide 2b, while capa-3 is a novel member of the pheromone biosynthesis-activating neuropeptide/diapause hormone/pyrokinin family. By immunocytochemistry, we identified four pairs of neuroendocrine cells likely to release the capa peptides into the hemolymph: one pair in the subesophageal ganglion and the other three in the abdominal neuromeres. In the Malpighian (renal) tubule, capa-1 and capa-2 increase fluid secretion rates, stimulate nitric oxide production, and elevate intracellular Ca(2+) and cGMP in principal cells. Capa-stimulated fluid secretion, but not intracellular Ca(2+) concentration rise, is inhibited by the guanylate cyclase inhibitor methylene blue. The actions of capa-1 and capa-2 are not synergistic, implying that both act on the same pathways in tubules. The capa gene is thus the first to be shown to encode neuropeptides that act on renal fluid production through nitric oxide.  相似文献   
69.
Yin-yang 1 activates the c-myc promoter.   总被引:22,自引:5,他引:17       下载免费PDF全文
  相似文献   
70.
CD44 is an integral hyaluronan receptor that can promote or inhibit motogenic signaling in tumor cells. Rhamm is a nonintegral cell surface hyaluronan receptor (CD168) and intracellular protein that promotes cell motility in culture. Here we describe an autocrine mechanism utilizing cell surface Rhamm-CD44 interactions to sustain rapid basal motility in invasive breast cancer cell lines that requires endogenous hyaluronan synthesis and the formation of Rhamm-CD44-ERK1,2 complexes. Motile/invasive MDA-MB-231 and Ras-MCF10A cells produce more endogenous hyaluronan, cell surface CD44 and Rhamm, an oncogenic Rhamm isoform, and exhibit more elevated basal activation of ERK1,2 than less invasive MCF7 and MCF10A breast cancer cells. Furthermore, CD44, Rhamm, and ERK1,2 uniquely co-immunoprecipitate and co-localize in MDA-MB-231 and Ras-MCF10A cells. Combinations of anti-CD44, anti-Rhamm antibodies, and a MEK1 inhibitor (PD098059) had less-than-additive blocking effects, suggesting the action of all three proteins on a common motogenic signaling pathway. Collectively, these results show that cell surface Rhamm and CD44 act together in a hyaluronan-dependent autocrine mechanism to coordinate sustained signaling through ERK1,2, leading to high basal motility of invasive breast cancer cells. Therefore, an effect of CD44 on tumor cell motility may depend in part on its ability to partner with additional proteins, such as cell surface Rhamm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号