首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   5篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   8篇
  2012年   7篇
  2011年   6篇
  2010年   8篇
  2009年   7篇
  2008年   5篇
  2007年   9篇
  2006年   7篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1993年   2篇
  1990年   1篇
排序方式: 共有100条查询结果,搜索用时 31 毫秒
21.
Shireen Kahai 《FEBS letters》2010,584(1):233-1086
We found that nephronectin was significantly down-regulated by TGF-β1. To determine the function of nephronectin in osteogenesis, we generated various constructs to produce stable MC3T3-E1 cell lines, expressing and secreting nephronectin protein, including full-length (Npnt), lacking EGF-like repeats (Np-MAM), and lacking RGD and MAM domains (Np-EGF). We demonstrated that nephronectin promotes differentiation during osteoblast differentiation and the EGF-like repeats were essential. Lack of these repeats resulted in inhibiting the change in morphology. Over-expression of nephronectin results in earlier formation of bone nodules than the vector control. ERK activation is essential for nephronectin-induced osteoblast differentiation.  相似文献   
22.
23.
24.
Nonsense-mediated decay (NMD) is a eukaryotic cellular RNA surveillance and quality-control mechanism that degrades mRNA containing premature stop codons (nonsense mutations) that otherwise may exert a deleterious effect by the production of dysfunctional truncated proteins. Collagen X (COL10A1) nonsense mutations in Schmid-type metaphyseal chondrodysplasia are localized in a region toward the 3' end of the last exon (exon 3) and result in mRNA decay, in contrast to most other genes in which terminal-exon nonsense mutations are resistant to NMD. We introduce nonsense mutations into the mouse Col10a1 gene and express these in a hypertrophic-chondrocyte cell line to explore the mechanism of last-exon mRNA decay of Col10a1 and demonstrate that mRNA decay is spatially restricted to mutations occurring in a 3' region of the exon 3 coding sequence; this region corresponds to where human mutations have been described. This localization of mRNA-decay competency suggested that a downstream region, such as the 3' UTR, may play a role in specifying decay of mutant Col10a1 mRNA containing nonsense mutations. We found that deleting any of the three conserved sequence regions within the 3' UTR (region I, 23 bp; region II, 170 bp; and region III, 76 bp) prevented mutant mRNA decay, but a smaller 13 bp deletion within region III was permissive for decay. These data suggest that the 3' UTR participates in collagen X last-exon mRNA decay and that overall 3' UTR configuration, rather than specific linear-sequence motifs, may be important in specifying decay of Col10a1 mRNA containing nonsense mutations.  相似文献   
25.
Suppression of inflammation is critical for effective therapy of many infectious diseases. However, the high rates of mortality caused by sepsis attest to the need to better understand the basis of the inflammatory sequelae of sepsis and to develop new options for its treatment. In mice, inflammatory responses to host danger-associated molecular patterns (DAMPs), but not to microbial pathogen-associated molecular patterns (PAMPs), are repressed by the interaction [corrected] of CD24 and SiglecG (SIGLEC10 in human). Here we use an intestinal perforation model of sepsis to show that microbial sialidases target the sialic acid-based recognition of CD24 by SiglecG/10 to exacerbate inflammation. Sialidase inhibitors protect mice against sepsis by a mechanism involving both CD24 and Siglecg, whereas mutation of either gene exacerbates sepsis. Analysis of sialidase-deficient bacterial mutants confirms the key contribution of disrupting sialic acid-based pattern recognition to microbial virulence and supports the clinical potential of sialidase inhibition for dampening inflammation caused by infection.  相似文献   
26.
The inherited brittle bone disease osteogenesis imperfecta (OI) is commonly caused by COL1A1 and COL1A2 mutations that disrupt the collagen I triple helix. This causes intracellular endoplasmic reticulum (ER) retention of the misfolded collagen and can result in a pathological ER stress response. A therapeutic approach to reduce this toxic mutant load could be to stimulate mutant collagen degradation by manipulating autophagy and/or ER‐associated degradation. Since carbamazepine (CBZ) both stimulates autophagy of misfolded collagen X and improves skeletal pathology in a metaphyseal chondrodysplasia model, we tested the effect of CBZ on bone structure and strength in 3‐week‐old male OI Col1a2 +/p.G610C and control mice. Treatment for 3 or 6 weeks with CBZ, at the dose effective in metaphyseal chondrodysplasia, provided no therapeutic benefit to Col1a2 +/p.G610C mouse bone structure, strength or composition, measured by micro‐computed tomography, three point bending tests and Fourier‐transform infrared microspectroscopy. In control mice, however, CBZ treatment for 6 weeks impaired femur growth and led to lower femoral cortical and trabecular bone mass. These data, showing the negative impact of CBZ treatment on the developing mouse bones, raise important issues which must be considered in any human clinical applications of CBZ in growing individuals.  相似文献   
27.
The present study investigates the effect of pH and intermediate products formation on biological hydrogen production using Enterobacter cloacae IIT-BT 08. Initial pH was found to have a profound effect on hydrogen production potential, while regulating the pH 6.5 throughout the fermentation was found to increase the cumulative hydrogen production rate and yield significantly. Modified Gompertz equation was used to fit the cumulative hydrogen production curves to obtain the hydrogen production potential P, the hydrogen production rate R and lag phase λ. At regulated pH 6.5, higher H(2) yield (3.1molH(2)mol(-1) glucose), specific hydrogen production potential (798.1mL/g) and specific rate of H(2) production (72.1mLL(-1)h(-1)g(-1)) were obtained. The volatile fatty acid profile showed butyrate, ethanol and acetate as the major end metabolites of fermentation under the operating pH conditions tested; however, their pattern of distribution was pH dependent. At the optimum pH of 6.5, the acetate to butyrate ratio (A/B ratio) was found to be higher than that at any other pH. The study also investigates the effect of sodium ions on biohydrogen production potential. It was also found that sodium ion concentration up to 250mM enhanced the hydrogen production potential; however, any further increase in the metal ion concentration had an inhibitory effect.  相似文献   
28.
The COOH-terminal portion of cartilage proteoglycan core protein,aggrecan, expressed by in vitro translation, binds carbohydrate-containingaffinity columns. The in vitro expression approach has beenused to define the sugar-binding protion of the core protein.The active fragment, which corresponds closely to the carbohydrate-recognitiondomains in the family of Ca2+-dependent (C-type) animal lectins,has been expressed in bacteria and characterized. The CD spectrumof the domain is very similar to the spectrum of the bindingdomain of serum mannose-binding protein, suggesting that itsoverall structure probably resembles the known three-dimensionalstructure of the mannose-binding domain. The binding specificityof the core protein fragment has been characterized using asolidphase assay. The results suggest that the monosaccharide-bindingsite is also similar to that in other C-type carbohydrate-recognitiondomains. binding carbohydrate recognition expression lectin proteoglycan  相似文献   
29.
Bone matrix contains high concentrations of growth factors that are known to play important regulatory roles during osteogenesis, particularly transforming growth factor-beta (TGF-beta). Divergent effects of TGF-beta on bone formation have been reported both in vitro and in vivo depending upon experimental conditions, cells employed and their stage of maturation. In this study, we have used a clonal osteoblastic cell line MC3T3-E1, derived from newborn mouse calvaria, as an in vitro model of bone development. These cells undergo an ordered, time-dependent developmental sequence characterized by three stages (proliferation, differentiation and mineralization), over a 30-35-day period. In this study, cDNA microarray technology was used to study the expression profile of 8470 genes, in the presence of TGF-beta1 during osteoblast development. Microarray analysis revealed 120 cDNAs to be differentially expressed in MC3T3-E1 osteoblasts that had been treated with TGF-beta1. From the 120 differentially expressed genes, we selected Collagen, type V, alpha1 (COL5A1) {differential expression=+4.9} for further studies since it represents a previously uncharacterized component of the bone matrix. Using Northern blotting, we found that, when MC3T3-E1 cells were treated with TGF-beta1, COL5A1 was up-regulated during the proliferation and differentiation phases of osteogenesis. Furthermore, by a combination of RNA in situ hybridization and Northern blotting, we found COL5A1 mRNA to be expressed in the calvaria and developing bone of the E17.5 mouse embryos. Lastly, significant COL5A1 protein expression was observed by immunohistochemistry in the developing bone of the E17.5 mouse embryos. In conclusion, by the use of in vitro and in vivo approaches, we have discovered that the COL5A1 gene is a target of TGF-beta during osteogenesis.  相似文献   
30.
Calcium signaling is an important mediator of neuropeptide-stimulated fluid transport by Drosophila Malpighian (renal) tubules. We demonstrate the first epithelial role, in vivo, for members of the TRP family of calcium channels. RT-PCR revealed expression of trp, trpl, and trpγ in tubules. Use of antipeptide polyclonal antibodies for TRP, TRPL, and TRPγ showed expression of all three channels in type 1 (principal) cells in the tubule main segment. Neuropeptide (CAP2b)-stimulated fluid transport rates were significantly reduced in tubules from the trpl302 mutant and the trpl;trp double mutant, trpl302;trp343. However, a trp null, trp343, had no impact on stimulated fluid transport. Measurement of cytosolic calcium concentrations ([Ca2+]i) in tubule principal cells using an aequorin transgene in trp and trpl mutants showed a reduction in calcium responses in trpl302. Western blotting of tubule preparations from trp and trpl mutants revealed a correlation between TRPL levels and CAP2b-stimulated fluid transport and calcium signaling. Rescue of trpl302 with a trpl transgene under heat-shock control resulted in a stimulated fluid transport phenotype that was indistinguishable from wild-type tubules. Furthermore, restoration of normal stimulated rates of fluid transport by rescue of trpl302 was not compromised by introduction of the trp null, trp343. Thus, in an epithelial context, TRPL is sufficient for wild-type responses. Finally, a scaffolding component of the TRPL/TRP-signaling complex, INAD, is not expressed in tubules, suggesting that inaD is not essential for TRPL/TRP function in Drosophila tubules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号