首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   16篇
  国内免费   1篇
  217篇
  2022年   5篇
  2021年   5篇
  2020年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   10篇
  2014年   4篇
  2013年   12篇
  2012年   11篇
  2011年   12篇
  2010年   4篇
  2009年   7篇
  2008年   12篇
  2007年   12篇
  2006年   7篇
  2005年   5篇
  2004年   6篇
  2003年   7篇
  2002年   2篇
  2001年   5篇
  2000年   7篇
  1999年   7篇
  1998年   3篇
  1996年   6篇
  1995年   1篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   7篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   5篇
  1976年   1篇
  1974年   1篇
  1969年   2篇
  1965年   1篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
21.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   
22.
The four major components of the wheat monomeric α-amylase inhibitors (WMAI) from wheat, Triticum aestivum, endosperm have been isolated and characterized. Two of them, WMAI-1 and WMAI-2, are highly active against the α-amylase from the insect Tenebrio molitor and their N-terminal amino acid sequences indicate that they are closely related to each other (86% identical residues) and to the other members of the family (subunits of dimeric and tetrameric α-amylase inhibitors and trypsin inhibitors). WMAI-1, which is identical to the previously described 0.28 inhibitor, is encoded by a gene located in the short arm of chromosome 6D and WMAI-2 by a gene in the short arm of chromosome 6B. Components 3 and 4, which have blocked N-terminal residues, have identical internal amino acid sequences and are a separate class of proteins with respect to WMAI-1 and WMAI-2, although their amino acid composition and apparent molecular weights are quite similar. Their inhibitory activity versus α-amylases is either unstable during the purification process or due to contamination with other inhibitors.  相似文献   
23.
Bacteria of the genus Brucella are Gram-negative pathogens of several animal species that cause a zoonotic disease in humans known as brucellosis or Malta fever. Within their hosts, brucellae reside within different cell types where they establish a replicative niche and remain protected from the immune response. The aim of this article is to discuss recent advances in the field in the specific context of the Brucella intracellular 'lifestyle'. We initially discuss the different host cell targets and their relevance during infection. As it represents the key to intracellular replication, the focus is then set on the maturation of the Brucella phagosome, with particular emphasis on the Brucella factors that are directly implicated in intracellular trafficking and modulation of host cell signalling pathways. Recent data on the role of the type IV secretion system are discussed, novel effector molecules identified and how some of them impact on trafficking events. Current knowledge on Brucella gene regulation and control of host cell death are summarized, as they directly affect intracellular persistence. Understanding how Brucella molecules interplay with their host cell targets to modulate cellular functions and establish the intracellular niche will help unravel how this pathogen causes disease.  相似文献   
24.
Summary A cDNA encoding trypsin inhibitor CMe from barley endosperm has been cloned and characterized. The longest open reading frame of the cloned cDNA codes for a typical signal peptide of 24 residues followed by a sequence which is identical to the known amino acid sequence of the inhibitor, except for an Ile/Leu substitution at position 59. Southern blot analysis of wheat-barley addition lines has shown that chromosome 3H of barley carries the gene for CMe. This protein is present at less than 2%–3% of the wild-type amount in the mature endosperm of the mutant Risø 1508 with respect to Bomi barley, from which it has been derived, and the corresponding steady state levels of the CMe mRNA are about I%. One or two copies of the CMe gene (synonym Itc1) per haploid genome have been estimated both in the wild type and in the mutant, and DNA restriction patterns are identical in both stocks, so neither a change in copy number nor a major rearrangement of the structural gene account for the markedly decreased expression. The mutation at the lys 3a locus in Risø 1508 has been previously mapped in chromosome 7 (synonym 5H). A single dose of the wild-type allele at this locus (Lys 3a) restores the expression of gene CMe (allele CMe-1) in chromosome 3H to normal levels.  相似文献   
25.
Using morphological and molecular data, the new species Sistotremastrum guttuliferum is described from specimens collected in the Azores archipelago, Madeira and Canary Islands. Morphologically, this new species differs from S. niveocremeum and S. suecicum by the small oil drops in the cytoplasm of subicular hyphae and the spore size. An updated key of Sistotremastrum species is provided.  相似文献   
26.
The study of cross-reactivity in allergy is key to both understanding. the allergic response of many patients and providing them with a rational treatment In the present study, protein microarrays and a co-sensitization graph approach were used in conjunction with an allergen microarray immunoassay. This enabled us to include a wide number of proteins and a large number of patients, and to study sensitization profiles among members of the LTP family. Fourteen LTPs from the most frequent plant food-induced allergies in the geographical area studied were printed into a microarray specifically designed for this research. 212 patients with fruit allergy and 117 food-tolerant pollen allergic subjects were recruited from seven regions of Spain with different pollen profiles, and their sera were tested with allergen microarray. This approach has proven itself to be a good tool to study cross-reactivity between members of LTP family, and could become a useful strategy to analyze other families of allergens.  相似文献   
27.
28.
A new inhibitor of insect -amylase, designated RDAI-1, has been purified from rye (Secale cereale L.) endosperm. RDAI-1 is homologous to wheat homodimeric inhibitors. This homology is supported by their similar N-terminal amino-acid sequences, inhibitory activities towards amylases from Tenebrio molitor (Coleoptera) and human saliva, and aggregative properties in gel-filtration chromatography. The gene encoding RDAI-1, IdhaR1, is located on the short arm of chromosome 3R, which is homoeologous with wheat chromosome arms 3BS and 3DS, where the genes for homodimeric inhibitors have been previously mapped.  相似文献   
29.
Chemokines are attractants and regulators of cell activation. Several CXC family chemokine members induce angiogenesis and promote tumor growth. In contrast, the only CC chemokine, reported to play a direct role in angiogenesis is monocyte-chemotactic protein-1. Here we report that another CC chemokine, eotaxin (also known as CCL11), also induced chemotaxis of human microvascular endothelial cells. CCL11-induced chemotactic responses were comparable with those induced by monocyte-chemotactic protein-1 (CCL2), but lower than those induced by stroma-derived factor-1alpha (CXCL12) and IL-8 (CXCL8). The chemotactic activity was consistent with the expression of CCR3, the receptor for CCL11, on human microvascular endothelial cells and was inhibited by mAbs to either human CCL11 or human CCR3. CCL11 also induced the formation of blood vessels in vivo as assessed by the chick chorioallantoic membrane and Matrigel plug assays. The angiogenic response induced by CCL11 was about one-half of that induced by basic fibroblast factor, and it was accompanied by an inflammatory infiltrate, which consisted predominantly of eosinophils. Because the rat aortic sprouting assay, which is not infiltrated by eosinophils, yielded a positive response to CCL11, this angiogenic response appears to be direct and is not mediated by eosinophil products. This suggests that CCL11 may contribute to angiogenesis in conditions characterized by increased CCL11 production and eosinophil infiltration such as Hodgkin's lymphoma, nasal polyposis, endometriosis, and allergic diathesis.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号