首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4336篇
  免费   314篇
  国内免费   1篇
  4651篇
  2023年   18篇
  2022年   39篇
  2021年   107篇
  2020年   63篇
  2019年   81篇
  2018年   107篇
  2017年   90篇
  2016年   145篇
  2015年   193篇
  2014年   225篇
  2013年   257篇
  2012年   403篇
  2011年   353篇
  2010年   234篇
  2009年   176篇
  2008年   259篇
  2007年   276篇
  2006年   269篇
  2005年   199篇
  2004年   225篇
  2003年   207篇
  2002年   190篇
  2001年   33篇
  2000年   30篇
  1999年   45篇
  1998年   54篇
  1997年   44篇
  1996年   29篇
  1995年   41篇
  1994年   25篇
  1993年   17篇
  1992年   22篇
  1991年   22篇
  1990年   28篇
  1989年   13篇
  1988年   16篇
  1987年   11篇
  1986年   9篇
  1985年   8篇
  1984年   9篇
  1983年   13篇
  1982年   3篇
  1981年   12篇
  1980年   8篇
  1979年   6篇
  1978年   6篇
  1977年   7篇
  1975年   12篇
  1973年   4篇
  1972年   2篇
排序方式: 共有4651条查询结果,搜索用时 15 毫秒
41.
Protein quality control mechanisms decline during the process of cardiac aging. This enables the accumulation of protein aggregates and damaged organelles that contribute to age‐associated cardiac dysfunction. Macroautophagy is the process by which post‐mitotic cells such as cardiomyocytes clear defective proteins and organelles. We hypothesized that late‐in‐life exercise training improves autophagy, protein aggregate clearance, and function that is otherwise dysregulated in hearts from old vs. adult mice. As expected, 24‐month‐old male C57BL/6J mice (old) exhibited repressed autophagosome formation and protein aggregate accumulation in the heart, systolic and diastolic dysfunction, and reduced exercise capacity vs. 8‐month‐old (adult) mice (all < 0.05). To investigate the influence of late‐in‐life exercise training, additional cohorts of 21‐month‐old mice did (old‐ETR) or did not (old‐SED) complete a 3‐month progressive resistance treadmill running program. Body composition, exercise capacity, and soleus muscle citrate synthase activity improved in old‐ETR vs. old‐SED mice at 24 months (all < 0.05). Importantly, protein expression of autophagy markers indicate trafficking of the autophagosome to the lysosome increased, protein aggregate clearance improved, and overall function was enhanced (all < 0.05) in hearts from old‐ETR vs. old‐SED mice. These data provide the first evidence that a physiological intervention initiated late‐in‐life improves autophagic flux, protein aggregate clearance, and contractile performance in mouse hearts.  相似文献   
42.
The recent development of a Hepatitis C virus (HCV) infectious virus cell culture model system has facilitated the development of whole-virus screening assays which can be used to interrogate the entire virus life cycle. Here, we describe the development of an HCV growth assay capable of identifying inhibitors against all stages of the virus life cycle with assay throughput suitable for rapid screening of large-scale chemical libraries. Novel features include, 1) the use of an efficiently-spreading, full-length, intergenotypic chimeric reporter virus with genotype 1 structural proteins, 2) a homogenous assay format compatible with miniaturization and automated liquid-handling, and 3) flexible assay end-points using either chemiluminescence (high-throughput screening) or Cellomics ArrayScan™ technology (high-content screening). The assay was validated using known HCV antivirals and through a large-scale, high-throughput screening campaign that identified novel and selective entry, replication and late-stage inhibitors. Selection and characterization of resistant viruses provided information regarding inhibitor target and mechanism. Leveraging results from this robust whole-virus assay represents a critical first step towards identifying inhibitors of novel targets to broaden the spectrum of antivirals for the treatment of HCV.  相似文献   
43.
ABSTRACT: BACKGROUND: The enzymatic conversion of lignocellulosic plant biomass into fermentable sugars is a crucial step in the sustainable and environmentally friendly production of biofuels. However, a major drawback of enzymes from mesophilic sources is their suboptimal activity under established pretreatment conditions, e.g. high temperatures, extreme pH values and high salt concentrations. Enzymes from extremophiles are better adapted to these conditions and could be produced by heterologous expression in microbes, or even directly in the plant biomass. RESULTS: Here we show that a cellulase gene (sso1354) isolated from the hyperthermophilic archaeon Sulfolobus solfataricus can be expressed in plants, and that the recombinant enzyme is biologically active and exhibits the same properties as the wild type form. Since the enzyme is inactive under normal plant growth conditions, this potentially allows its expression in plants without negative effects on growth and development, and subsequent heat-inducible activation. Furthermore we demonstrate that the recombinant enzyme acts in high concentrations of ionic liquids and can therefore degrade alpha-cellulose or even complex cell wall preparations under those pretreatment conditions. CONCLUSION: The hyperthermophilic endoglucanase SSO1354 with its unique features is an excellent tool for advanced biomass conversion. Here we demonstrate its expression in planta and the possibility for post harvest activation. Moreover the enzyme is suitable for combined pretreatment and hydrolysis applications.  相似文献   
44.
45.
We recently discovered an inherited cancer syndrome caused by BRCA1-Associated Protein 1 (BAP1) germline mutations, with high incidence of mesothelioma, uveal melanoma and other cancers and very high penetrance by age 55. To identify families with the BAP1 cancer syndrome, we screened patients with family histories of multiple mesotheliomas and melanomas and/or multiple cancers. We identified four families that shared an identical BAP1 mutation: they lived across the US and did not appear to be related. By combining family histories, molecular genetics, and genealogical approaches, we uncovered a BAP1 cancer syndrome kindred of ~80,000 descendants with a core of 106 individuals, whose members descend from a couple born in Germany in the early 1700s who immigrated to North America. Their descendants spread throughout the country with mutation carriers affected by multiple malignancies. Our data show that, once a proband is identified, extended analyses of these kindreds, using genomic and genealogical studies to identify the most recent common ancestor, allow investigators to uncover additional branches of the family that may carry BAP1 mutations. Using this knowledge, we have identified new branches of this family carrying BAP1 mutations. We have also implemented early-detection strategies that help identify cancers at early-stage, when they can be cured (melanomas) or are more susceptible to therapy (MM and other malignancies).  相似文献   
46.
The first example of organocatalytic aziridination reaction of α‐substituted‐α,β‐unsaturated ketones is presented. The reaction was found to be highly enantio‐ and diastereoselective, yielding N‐tosylated aziridines. Low‐temperature nuclear magnetic resonance (NMR) spectra allowed for the determination of the N‐inversion barrier, that was found to be quite lower with respect to unsubstituted aziridines. A thorough conformational analysis supported by low‐temperature NMR data allowed for the determination of the absolute configuration of the main stereoisomer by means of time‐dependent Density Functional Theory simulation of the electronic circular dichroism spectra. Chirality 27:875–887, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
47.
Reproductive aging is associated with ovulatory defects. Age-related ovarian fibrosis partially contributes to this phenotype as short-term treatment with anti-fibrotic compounds improves ovulation in reproductively old mice. However, age-dependent changes that are intrinsic to the follicle may also be relevant. In this study, we used a mouse model to demonstrate that reproductive aging is associated with impaired cumulus expansion which is accompanied by altered morphokinetic behavior of cumulus cells as assessed by time-lapse microscopy. The extracellular matrix integrity of expanded cumulus–oocyte complexes is compromised with advanced age as evidenced by increased penetration of fluorescent nanoparticles in a particle exclusion assay and larger open spaces on scanning electron microscopy. Reduced hyaluronan (HA) levels, decreased expression of genes encoding HA-associated proteins (e.g., Ptx3 and Tnfaip6), and increased expression of inflammatory genes and matrix metalloproteinases underlie this loss of matrix integrity. Importantly, HA levels are decreased with age in follicular fluid of women, indicative of conserved reproductive aging mechanisms. These findings provide novel mechanistic insights into how defects in cumulus expansion contribute to age-related infertility and may serve as a target to extend reproductive longevity.  相似文献   
48.
Forbs are important biodiversity components of grasslands and are often threatened by management intensification. As most forbs propagate predominantly by seed, knowledge of their seed regenerative traits would improve the conservation and restoration of forb-rich ecosystems. The main seed production traits of six forbs that are common in European species-rich grasslands were studied by collecting fertile shoots from different sites and over several years. Among sites and years, variability was high, particularly in the number of inflorescences per shoot, which affected ovule production more than any other trait. Relationships between inflorescence size and the number of ovules were mainly negatively allometric or almost so, with lower flower densities in larger inflorescences. The average ovule-to-seed transformation efficiency was 58%. There was significant variation among collections of the same species, and even more between species. Species with a low ovule-to-seed transformation efficiency generally exhibited compensatory, high seed viability. Large inflorescences had high ovule to seed utilization values, probably because of better nutrient conditions. Seed germinability (average, 30%) was much lower than seed viability (average, 54%); therefore, seed dormancy was an important feature of the species studied.  相似文献   
49.
Knockout serum replacement (KOSR) is a nutrient supplement commonly used to replace serum for culturing stem cells. We show here that KOSR has pro-survival activity in chronic myelogenous leukemia (CML) cells transformed by the BCR-ABL oncogene. Inhibitors of BCR-ABL tyrosine kinase kill CML cells by stimulating pro-apoptotic BIM and inhibiting anti-apoptotic BCL2, BCLxL and MCL1. We found that KOSR protects CML cells from killing by BCR-ABL inhibitors—imatinib, dasatinib and nilotinib. The protective effect of KOSR is reversible and not due to the selective outgrowth of drug-resistant clones. In KOSR-protected CML cells, imatinib still inhibited the BCR-ABL tyrosine kinase, reduced the phosphorylation of STAT, ERK and AKT, down-regulated BCL2, BCLxL, MCL1 and up-regulated BIM. However, these pro-apoptotic alterations failed to cause cytochrome c release from the mitochondria. With mitochondria isolated from KOSR-cultured CML cells, we showed that addition of recombinant BIM protein also failed to cause cytochrome c release. Besides the kinase inhibitors, KOSR could protect cells from menadione, an inducer of oxidative stress, but it did not protect cells from DNA damaging agents. Switching from serum to KOSR caused a transient increase in reactive oxygen species and AKT phosphorylation in CML cells that were protected by KOSR but not in those that were not protected by this nutrient supplement. Treatment of KOSR-cultured cells with the PH-domain inhibitor MK2206 blocked AKT phosphorylation, abrogated the formation of BIM-resistant mitochondria and stimulated cell death. These results show that KOSR has cell-context dependent pro-survival activity that is linked to AKT activation and the inhibition of BIM-induced cytochrome c release from the mitochondria.  相似文献   
50.
Mycotoxins are fungal metabolites commonly occurring in food, which pose a health risk to the consumer. Maximum levels for major mycotoxins allowed in food have been established worldwide. Good agricultural practices, plant disease management, and adequate storage conditions limit mycotoxin levels in the food chain yet do not eliminate mycotoxins completely. Food processing can further reduce mycotoxin levels by physical removal and decontamination by chemical or enzymatic transformation of mycotoxins into less toxic products. Physical removal of mycotoxins is very efficient: manual sorting of grains, nuts, and fruits by farmers as well as automatic sorting by the industry significantly lowers the mean mycotoxin content. Further processing such as milling, steeping, and extrusion can also reduce mycotoxin content. Mycotoxins can be detoxified chemically by reacting with food components and technical aids; these reactions are facilitated by high temperature and alkaline or acidic conditions. Detoxification of mycotoxins can also be achieved enzymatically. Some enzymes able to transform mycotoxins naturally occur in food commodities or are produced during fermentation but more efficient detoxification can be achieved by deliberate introduction of purified enzymes. We recommend integrating evaluation of processing technologies for their impact on mycotoxins into risk management. Processing steps proven to mitigate mycotoxin contamination should be used whenever necessary. Development of detoxification technologies for high-risk commodities should be a priority for research. While physical techniques currently offer the most efficient post-harvest reduction of mycotoxin content in food, biotechnology possesses the largest potential for future developments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号