首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   9篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   5篇
  1977年   1篇
  1976年   1篇
排序方式: 共有97条查询结果,搜索用时 728 毫秒
21.
Feulgen cytophotometry and autoradiography were used to study DNA content and DNA synthesis in starved and starved-refed Tetrahymena pyriformis GL-C. It was found that (1) the cell population shows a limited increase in cell number during starvation and this increase is restricted to the first 7 h of starvation; (2) at the end of starvation, there is a portion of the cell population whose DNA content is similar to that for standard G2 cells; (3) a significant portion of the dividing cells at the first division following refeeding in the presence of [3H]TdR are unlabeled; (4) these unlabeled cells are among the first to divide and, upon division, generally enter into a cell cycle either lacking a G1 phase or with a shortened G1 phase.  相似文献   
22.
Two procedures using liquid chromatography with electrochemical detection are described for the determination of dopamine (DA) and its two acidic metabolites, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC), in subregions of rat striatum and nucleus accumbens. A strong cation-exchange column was used for DA analysis and a C1 reversed-phase column was used for the analysis of the metabolites. Effects of pH, temperature and percentage of methanol on the retention time of HVA and DOPAC were studied. Levels of these compounds in the subregions of rat striatum and nucleus accumbens are reported.  相似文献   
23.
Hydroxyurea (10 mM) arrests the exponential growth of Tetrahymena by blocking DNA replication during S-phase. After removal of the hydroxyurea (HU), they have a long recovery period during which they are active in DNA synthesis. 3H-TdR uptake showed that on completion of the recovery period, the cells divide (recovery division) and enter a cell cycle which lacks G1. The frequency, size and DNA content of the extranuclear chromatin bodies (ECB) formed at this division are all markedly increased (2–4) over the corresponding values obtained from exponential growth phase controls. Microspectrophotometric analysis of macronuclear DNA content (N) coupled with the cytoplasmic dry mass (C) values suggest that specific N to C ratios (N/C) are required for the initiation of DNA replication and fission: during a normal (exponential growth) cell cycle, both N and C double, but asynchronously, so that the N/C of both post-fission-daughter cells and pre-fission cells is identical (standardized to N/C = 1) but late G1 cells have a low N/C. During a 10 hr exposure to HU, the N remains essentially the same whereas the C increases. When the HU is removed, the N increases by 4× and the C continues to increase until just prior to recovery division when it also reaches a value 4× that of the original daughter cells. Thus, the N/C = 1 is re-established. The enlarged ECB formed during recovery division may function to lower the N/C in the daughter cells, which in turn may in some way stimulate immediate DNA replication, thus eliminating G1. The elimination of G1 (and shortening in a few subsequent cell cycles) allows less time for cytoplasmic growth and results in the return of the cells to the generation time and the N and C values observed prior to the HU treatment.  相似文献   
24.
It is widely appreciated that inflammatory responses in peripheral tissues are usually associated to the development of acidic microenvironments. Despite this, there are few studies aimed to analyze the effect of extracellular pH on immune cell functions. We analyzed the impact of acidosis on the behavior of dendritic cells (DCs) derived from murine bone marrow. We found that extracellular acidosis (pH 6.5) markedly stimulated the uptake of FITC-OVA, FITC-dextran, and HRP by DCs. In fact, to reach similar levels of endocytosis, DCs cultured at pH 7.3 required concentrations of Ag in the extracellular medium almost 10-fold higher compared with DCs cultured at pH 6.5. Not only the endocytic capacity of DCs was up-regulated by extracellular acidosis, but also the expression of CD11c, MHC class II, CD40, and CD86 as well as the acquisition of extracellular Ags by DCs for MHC class I-restricted presentation. Importantly, DCs pulsed with Ag under acidosis showed an improved efficacy to induce both specific CD8(+) CTLs and specific Ab responses in vivo. Our results suggest that extracellular acidosis improves the Ag-presenting capacity of DCs.  相似文献   
25.
We describe the functional consequences of mutations in the linker between the second and third transmembrane segments (M2-M3L) of muscle acetylcholine receptors at the single-channel level. Hydrophobic mutations (Ile, Cys, and Phe) placed near the middle of the linker of the alpha subunit (alphaS269) prolong apparent openings elicited by low concentrations of acetylcholine (ACh), whereas hydrophilic mutations (Asp, Lys, and Gln) are without effect. Because the gating kinetics of the alphaS269I receptor (a congenital myasthenic syndrome mutant) in the presence of ACh are too fast, choline was used as the agonist. This revealed an approximately 92-fold increased gating equilibrium constant, which is consistent with an approximately 10-fold decreased EC(50) in the presence of ACh. With choline, this mutation accelerates channel opening approximately 28-fold, slows channel closing approximately 3-fold, but does not affect agonist binding to the closed state. These ratios suggest that, with ACh, alphaS269I acetylcholine receptors open at a rate of approximately 1.4 x 10(6) s(-1) and close at a rate of approximately 760 s(-1). These gating rate constants, together with the measured duration of apparent openings at low ACh concentrations, further suggest that ACh dissociates from the diliganded open receptor at a rate of approximately 140 s(-1). Ile mutations at positions flanking alphaS269 impair, rather than enhance, channel gating. Inserting or deleting one residue from this linker in the alpha subunit increased and decreased, respectively, the apparent open time approximately twofold. Contrary to the alphaS269I mutation, Ile mutations at equivalent positions of the beta, straightepsilon, and delta subunits do not affect apparent open-channel lifetimes. However, in beta and straightepsilon, shifting the mutation one residue to the NH(2)-terminal end enhances channel gating. The overall results indicate that this linker is a control element whose hydrophobicity determines channel gating in a position- and subunit-dependent manner. Characterization of the transition state of the gating reaction suggests that during channel opening the M2-M3L of the alpha subunit moves before the corresponding linkers of the beta and straightepsilon subunits.  相似文献   
26.
Promotion of neutrophil apoptosis by TNF-alpha   总被引:3,自引:0,他引:3  
We examined the ability of TNF-alpha to modulate human neutrophil apoptosis. Neutrophils cultured with TNF-alpha alone undergo a low but significant increase in the number of apoptotic cells. More interestingly, when neutrophils were pretreated with TNF-alpha for 1-2 min at 37 degrees C and then were exposed to a variety of agents such as immobilized IgG, IgG-coated erythrocytes, complement-treated erythrocytes, zymosan, PMA, zymosan-activated serum, fMLP, Escherichia coli, and GM-CSF for 3 h at 37 degrees C, a marked stimulation of apoptosis was observed. Similar results were obtained in neutrophils pretreated with TNF-alpha for 30 min, 1 h, 3 h, and 18 h. Dose-dependent studies showed that TNF-alpha enhances neutrophil apoptosis at concentrations ranging from 1 to 100 ng/ml. In contrast to the observations made in neutrophils pretreated with TNF-alpha, there was no stimulation of apoptosis when TNF-alpha was added to neutrophils previously activated by conventional agonists. Experiments performed to establish the mechanism through which TNF-alpha promotes neutrophil apoptosis showed that neither reactive oxygen intermediates nor the Fas/Fas ligand system appear to be involved. Our results suggest that TNF-alpha plays a critical role in the control of neutrophil survival by virtue of its ability to induce an apoptotic death program which could be triggered by a variety of conventional agonists.  相似文献   
27.
ADP-glucose pyrophosphorylase (AGPase) is a key regulatory enzyme of bacterial glycogen and plant starch synthesis as it controls carbon flux via its allosteric regulatory behavior. Unlike the bacterial enzyme that is composed of a single subunit type, the plant AGPase is a heterotetrameric enzyme (alpha2beta2) with distinct roles for each subunit type. The large subunit (LS) is involved mainly in allosteric regulation through its interaction with the catalytic small subunit (SS). The LS modulates the catalytic activity of the SS by increasing the allosteric regulatory response of the hetero-oligomeric enzyme. To identify regions of the LS involved in binding of effector molecules, a reverse genetics approach was employed. A potato (Solanum tuberosum L.) AGPase LS down-regulatory mutant (E38A) was subjected to random mutagenesis using error-prone polymerase chain reaction and screened for the capacity to form an enzyme capable of restoring glycogen production in glgC(-) Escherichia coli. Dominant mutations were identified by their capacity to restore glycogen production when the LS containing only the second site mutations was co-expressed with the wild-type SS. Sequence analysis showed that most of the mutations were decidedly nonrandom and were clustered at conserved N- and C-terminal regions. Kinetic analysis of the dominant mutant enzymes indicated that the K(m) values for cofactor and substrates were comparable with the wild-type AGPase, whereas the affinities for activator and inhibitor were altered appreciably. These AGPase variants displayed increased resistance to P(i) inhibition and/or greater sensitivity toward 3-phosphoglyceric acid activation. Further studies of Lys-197, Pro-261, and Lys-420, residues conserved in AGPase sequences, by site-directed mutagenesis suggested that the effectors 3-phosphoglyceric acid and P(i) interact at two closely located binding sites.  相似文献   
28.
Measurement of fat mass using DEXA: a validation study in elderly adults.   总被引:4,自引:0,他引:4  
The accuracy of total body fat mass and leg fat mass measurements by fan-beam dual-energy X-ray absorptiometry (DEXA) was assessed in 60 healthy elderly subjects (aged 70-79 yr). Total fat and leg fat mass at four leg regions (total leg, thigh, midthigh, and calf) were measured with the QDR 4500A (Hologic, Waltham, MA). The four-compartment model and multislice computed tomography scans were selected as criterion methods for total fat and leg fat mass, respectively. Total fat mass from DEXA was positively associated with fat mass from the four-compartment model with a standard error of the estimate ranging from 1.4 to 1.6 kg. DEXA fan-beam tended to overestimate fat mass for total leg and total thigh fat mass, whereas only marginal differences in fat mass measurements at the midthigh and calf were demonstrated (相似文献   
29.
30.
The ABC protein ABCE1, formerly named RNase L inhibitor RLI1, is one of the most conserved proteins in evolution and is expressed in all organisms except eubacteria. Because of its fundamental role in translation initiation and/or ribosome biosynthesis, ABCE1 is essential for life. Its molecular mechanism has, however, not been elucidated. In addition to two ABC ATPase domains, ABCE1 contains a unique N-terminal region with eight conserved cysteines, predicted to coordinate iron-sulfur clusters. Here we present detailed information on the type and on the structural organization of the Fe-S clusters in ABCE1. Based on biophysical, biochemical, and yeast genetic analyses, ABCE1 harbors two essential diamagnetic [4Fe-4S](2+) clusters with different electronic environments, one ferredoxin-like (CPX(n)CX(2)CX(2)C; Cys at positions 4-7) and one unique ABCE1-type cluster (CXPX(2)CX(3)CX(n)CP; Cys at positions 1, 2, 3, and 8). Strikingly, only seven of the eight conserved cysteines coordinating the Fe-S clusters are essential for cell viability. Mutagenesis of the cysteine at position 6 yielded a functional ABCE1 with the ferredoxin-like Fe-S cluster in a paramagnetic [3Fe-4S](+) state. Notably, a lethal mutation of the cysteine at position 4 can be rescued by ligand swapping with an adjacent, extra cysteine conserved among all eukaryotes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号