首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   26篇
  2023年   3篇
  2022年   7篇
  2021年   10篇
  2020年   3篇
  2019年   6篇
  2018年   12篇
  2017年   8篇
  2016年   18篇
  2015年   12篇
  2014年   10篇
  2013年   15篇
  2012年   20篇
  2011年   18篇
  2010年   9篇
  2009年   11篇
  2008年   3篇
  2007年   12篇
  2006年   12篇
  2005年   12篇
  2004年   8篇
  2003年   12篇
  2002年   6篇
  2001年   6篇
  1999年   4篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1993年   3篇
  1992年   9篇
  1991年   6篇
  1990年   13篇
  1989年   10篇
  1988年   6篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   8篇
  1983年   6篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1977年   2篇
  1974年   2篇
  1973年   6篇
  1972年   2篇
  1970年   2篇
  1966年   3篇
  1964年   2篇
  1962年   2篇
  1961年   2篇
排序方式: 共有355条查询结果,搜索用时 31 毫秒
21.
The CD134-CD134 ligand (CD134L) costimulatory pathway has been shown to be critical for both T and B cell activation; however, its role in regulating the alloimmune response remains unexplored. Furthermore, its interactions with other costimulatory pathways and immunosuppressive agents are unclear. We investigated the effect of CD134-CD134L pathway blockade on allograft rejection in fully MHC-mismatched rat cardiac and skin transplantation models. CD134L blockade alone did not prolong graft survival compared with that of untreated recipients, and in combination with donor-specific transfusion, cyclosporine, or rapamycin, was less effective than B7 blockade in prolonging allograft survival. However, in combination with B7 blockade, long-term allograft survival was achieved in all recipients (>200 days). Moreover, this was synergistic in reducing the frequency of IFN-gamma-producing alloreactive lymphocytes and inhibiting the generation of activated/effector lymphocytes. Most impressively, this combination prevented rejection in a presensitized model using adoptive transfer of primed lymphocytes into athymic heart transplant recipients. In comparison to untreated recipients (mean survival time (MST): 5.3 +/- 0.5 days), anti-CD134L mAb alone modestly prolonged allograft survival (MST: 14 +/- 2.8 days) as did CTLA4Ig (MST: 21.5 +/- 1.7 days), but all grafts were rejected within 24 days. Importantly, combined blockade further and significantly prolonged allograft survival (MST: 75.3 +/- 12.7 days) and prevented the expansion and/or persistence of primed/effector alloreactive T cells. Our data suggest that CD134-CD134L is a critical pathway in alloimmune responses, especially recall/primed responses, and is synergistic with CD28-B7 in mediating T cell effector responses during allograft rejection. Understanding the mechanisms of collaboration between these different pathways is important for the development of novel strategies to promote long-term allograft survival.  相似文献   
22.
23.
The mechanisms underlying physiological regulation of alloimmune responses remain poorly defined. We investigated the roles of cytokines, CTLA-4, CD25(+) T cells, and apoptosis in regulating alloimmune responses in vivo. Two murine cardiac transplant models were used, B10.D2 (minor mismatch) and C57BL/6 (major mismatch), into BALB/c recipients. Recipients were wild type, STAT4(-/-) (Th1 deficient), or STAT6(-/-) (Th2 deficient) mice. Minor mismatched allografts were accepted spontaneously in approximately 70% of wild type and STAT4(-/-) mice. By contrast, there was significantly shorter graft survival in minor mismatched STAT6(-/-) mice. Either the adoptive transfer of STAT4(-/-) splenocytes or the administration of IL-4Fc fusion protein into STAT6(-/-) mice resulted in long term graft survival. Blocking CTLA-4 signaling accelerated the rejection in all recipients, but was more pronounced in the minor combination. This was accompanied by an increased frequency of alloreactive T cells. Furthermore, CTLA-4 blockade regulated CD4(+) or CD8(+) as well as Th1 or Th2 alloreactive T cells. Finally, while anti-CD25 treatment prolonged graft survival in the major mismatched combination, the same treatment accelerated graft rejection in the minor mismatched group. The latter was associated with an increased frequency of alloreactive T cells and inhibition of T cell apoptosis. These data demonstrate that cytokine regulation, CTLA-4 negative signaling, and T cell apoptosis play critical roles in regulating alloimmunity, especially under conditions where the alloreactive T cell clone size is relatively small.  相似文献   
24.
Sexual reproduction and recombination are essential for the survival of most eukaryotic populations. Until recently, the impact of these processes on the structure of bacterial populations has been largely overlooked. The advent of large-scale whole-genome sequencing and the concomitant development of molecular tools, such as microarray technology, facilitate the sensitive detection of recombination events in bacteria. These techniques are revealing that bacterial populations are comprised of isolates that show a surprisingly wide spectrum of genetic diversity at the DNA level. Our new awareness of this genetic diversity is increasing our understanding of population structures and of how these affect host pathogen relationships.  相似文献   
25.
Previous studies proposed that N-ethylmaleimide (NEM) alkylates 3 classes of thiols on skeletal muscle ryanodine receptors (RyRs) producing 3 phases of channel modification, as function of time and concentration. NEM (5 mm) decreased, increased, and then decreased the open probability (P(o)) of the channel by thiol alkylation, a reaction not reversed by reducing agents. We now show that low NEM concentrations (20-200 microm) elicit Ca(2+) release from sarcoplasmic reticulum (SR) vesicles, but contrary to expectations, the effect was fully reversed by reducing agents or by washing SR vesicles. In bilayers, NEM (0.2 mm) increased P(o) of RyRs within seconds when added to the cis (not trans) side, and dithiothreitol (DTT; 1 mm) decreased P(o) in seconds. High (5 mm) NEM concentrations elicited SR Ca(2+) release that was not reversed by DTT, as expected for an alkylation reaction. A non-sulfhydryl reagent structurally related to NEM, N-ethylsuccinimide (0.1-0.5 mm), also elicited SR Ca(2+) release that was not reversed by DTT (1 mm). Other alkylating agents elicited SR Ca(2+) release, which was fully (N-methylmaleimide) or partially (iodoacetic acid) reversed by DTT and inhibited by ruthenium red. Nitric oxide (NO) donors at concentrations that did not activate RyRs inhibited NEM-induced Ca(2+) release, most likely by an interaction of NO with NEM rather than an inactivation of RyRs by NO. Thus, at low concentrations, NEM does not act as a selective thiol reagent and activates RyRs without alkylating critical thiols indicating that the multiple phases of ryanodine binding are unrelated to RyR activity or to NEM alkylation of RyRs.  相似文献   
26.
27.
IL-17 is a pro-inflammatory cytokine implicated in the pathogenesis of glomerulonephritis and IL-17 deficient mice are protected from nephrotoxic nephritis. However, a regulatory role for IL-17 has recently emerged. We describe a novel protective function for IL-17 in the kidney. Bone marrow chimeras were created using wild-type and IL-17 deficient mice and nephrotoxic nephritis was induced. IL-17 deficient hosts transplanted with wild-type bone marrow had worse disease by all indices compared to wild-type to wild-type bone marrow transplants (serum urea p<0.05; glomerular thrombosis p<0.05; tubular damage p<0.01), suggesting that in wild-type mice, IL-17 production by renal cells resistant to radiation is protective. IL-17 deficient mice transplanted with wild-type bone marrow also had a comparatively altered renal phenotype, with significant differences in renal cytokines (IL-10 p<0.01; IL-1β p<0.001; IL-23 p<0.01), and macrophage phenotype (expression of mannose receptor p<0.05; inducible nitric oxide synthase p<0.001). Finally we show that renal mast cells are resistant to radiation and produce IL-17, suggesting they are potential local mediators of disease protection. This is a novel role for intrinsic cells in the kidney that are radio-resistant and produce IL-17 to mediate protection in nephrotoxic nephritis. This has clinical significance as IL-17 blockade is being trialled as a therapeutic strategy in some autoimmune diseases.  相似文献   
28.

Background  

The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号