首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1708篇
  免费   100篇
  2021年   6篇
  2020年   9篇
  2019年   10篇
  2018年   15篇
  2017年   11篇
  2016年   22篇
  2015年   39篇
  2014年   40篇
  2013年   86篇
  2012年   87篇
  2011年   91篇
  2010年   56篇
  2009年   56篇
  2008年   73篇
  2007年   91篇
  2006年   84篇
  2005年   84篇
  2004年   88篇
  2003年   67篇
  2002年   62篇
  2001年   66篇
  2000年   68篇
  1999年   56篇
  1998年   23篇
  1997年   27篇
  1996年   21篇
  1995年   28篇
  1994年   23篇
  1993年   18篇
  1992年   37篇
  1991年   44篇
  1990年   34篇
  1989年   33篇
  1988年   26篇
  1987年   27篇
  1986年   23篇
  1985年   22篇
  1984年   25篇
  1983年   16篇
  1982年   11篇
  1981年   11篇
  1980年   8篇
  1979年   11篇
  1978年   9篇
  1977年   7篇
  1975年   11篇
  1972年   5篇
  1970年   5篇
  1969年   8篇
  1967年   4篇
排序方式: 共有1808条查询结果,搜索用时 15 毫秒
81.
Ligand binding triggers clathrin-mediated and, at high ligand concentrations, clathrin-independent endocytosis of EGFR. Clathrin-mediated endocytosis (CME) of EGFR is also induced by stimuli activating p38 MAPK. Mechanisms of both ligand- and p38-induced endocytosis are not fully understood, and how these pathways intermingle when concurrently activated remains unknown. Here we dissect the mechanisms of p38-induced endocytosis using a pH-sensitive model of endogenous EGFR, which is extracellularly tagged with a fluorogen-activating protein, and propose a unifying model of the crosstalk between multiple EGFR endocytosis pathways. We found that a new locus of p38-dependent phosphorylation in EGFR is essential for the receptor dileucine motif interaction with the σ2 subunit of clathrin adaptor AP2 and concomitant receptor internalization. p38-dependent endocytosis of EGFR induced by cytokines was additive to CME induced by picomolar EGF concentrations but constrained to internalizing ligand-free EGFRs due to Grb2 recruitment by ligand-activated EGFRs. Nanomolar EGF concentrations rerouted EGFR from CME to clathrin-independent endocytosis, primarily by diminishing p38-dependent endocytosis.  相似文献   
82.
Molecular identification of endogenous enzymes and biologically active substances from complex biological sources remains a challenging task, and although traditional biochemical purification is sometimes regarded as outdated, it remains one of the most powerful methodologies for this purpose. While biochemical purification usually requires large amounts of starting material and many separation steps, we developed an advanced method named “proteomic correlation profiling” in our previous study. In proteomic correlation profiling, we first fractionated biological material by column chromatography, and then calculated each protein''s correlation coefficient between the enzyme activity profile and protein abundance profile determined by proteomics technology toward fractions. Thereafter, we could choose possible candidates for the enzyme among proteins with a high correlation value by domain predictions using informatics tools. Ultimately, this streamlined procedure requires fewer purification steps and reduces starting materials dramatically due to low required purity compared with conventional approaches. To demonstrate the generality of this approach, we have now applied an improved workflow of proteomic correlation profiling to a drug metabolizing enzyme and successfully identified alkaline phosphatase, tissue-nonspecific isozyme (ALPL) as a phosphatase of CS-0777 phosphate (CS-0777-P), a selective sphingosine 1-phosphate receptor 1 modulator with potential benefits in the treatment of autoimmune diseases including multiple sclerosis, from human kidney extract. We identified ALPL as a candidate protein only by the 200-fold purification and only from 1 g of human kidney. The identification of ALPL as CS-0777-P phosphatase was strongly supported by a recombinant protein, and contribution of the enzyme in human kidney extract was validated by immunodepletion and a specific inhibitor. This approach can be applied to any kind of enzyme class and biologically active substance; therefore, we believe that we have provided a fast and practical option by combination of traditional biochemistry and state-of-the-art proteomic technology.Molecular identification for an enzyme reaction or biologically active substance in an organism is challenging, although molecular biological methodologies such as expression cloning (1), recombinant protein panel (2) and RNAi screening (3) have been introduced recently as alternative approaches. Conventional biochemical purification has provided a number of successes and thus still remains a powerful, though labor-intensive strategy.In the traditional protein purification, it had been necessary to purify an individual protein nearly to homogeneity at a microgram amount so that the purified protein could be analyzed by N-terminal amino acid sequencing. Protein identification by mass spectrometry subsequently revolutionized this technology by enabling identification of proteins at much lower abundances: individual proteins could then be associated with specific activities as soon as a band in SDS-PAGE could be observed, even when the purified protein was far from homogeneity (46). Although this streamlined the workflow by reducing the required starting materials as well as the separation steps for protein purification, a faster and more generalized approach from smaller starting material has still been desired because some proteins are physiochemically difficult for example in solubilization and stability. To solve these problems, we devised a proteomic correlation profiling methodology (7).The basic concept of proteomic correlation profiling was originally developed by Andersen et al. (8). They quantitatively profiled hundreds of proteins across several centrifugation fractions by mass spectrometry and identified centrosomal proteins by calculating the correlation of these protein expression profiles with already known centrosomal proteins. In the following study, Foster et al. applied this strategy to map more than 1400 proteins to ten subcellular locations (9). Although these studies used centrifugation as a separation method and a known marker profile as a standard for correlation, we extended this concept to use chromatography as a separation method and kinase activity as a basis for comparison; our approach successfully identified a kinase responsible for phosphorylation of peptide substrates just after one step chromatography, and was termed proteomic correlation profiling (7). Independently, Kuromitsu et al. reported identification of an active substance in the serum response element-dependent luciferase assay from interstitial cystitis urine after three-step chromatography by a similar concept (10). In theory, this general proteomic correlation profiling strategy can be adapted to any kind of separation method and activity profile but no other example has been reported thus far, therefore, actual examples where the method can be applied to other enzyme classes are required to prove its generality.Multiple sclerosis is the most common autoimmune disorder of the central nerve system in which the fatty myelin sheaths around the axons of the brain and spinal cord are damaged, leading to demyelination and scarring (11, 12). Until recently, the standard treatments for multiple sclerosis such as interferon beta, glatiramer acetate, mitoxantrone, and natalizumab would often cause severe adverse events (13, 14), providing an opportunity for development of less dangerous treatments for this disease. However, in 2010, Food and Drug Administration approved fingolimod (Gilenya; chemical structure in Fig. 1) as the first oral medicine, and recommended this as a first-line treatment for relapsing-remitting multiple sclerosis, opening up a new therapeutic approach to the disease (15).Open in a separate windowFig. 1.The chemical structures of CS-0777, fingolimod and their phosphorylated derivatives.Sphingosine 1-phosphate receptor 1 (S1P1)1 modulators are emerging as a new class of drugs with potential therapeutic application in multiple sclerosis (15), and fingolimod is a nonselective sphingosine 1-phosphate (S1P) receptor modulator (1618, 21, 22). Given its structural similarity to sphingosine, fingolimod is phosphorylated in vivo by sphingosine kinase, in particular sphingosine kinase 2 (SPHK2) (19, 20), and the fingolimod-phosphate (fingolimod-P, Fig. 1) binds to and activates four G protein-coupled S1P receptors (21, 22). By this mechanism, fingolimod-P induces internalization of S1P1 on lymphocytes, blocking the ability of the receptor to support lymphocyte egress and recirculation through secondary lymphoid organs. This suppresses immune responses and is presumably the main immunomodulatory mode of action of fingolimod.CS-0777 (Fig. 1) is a novel selective S1P1 modulator (23). Although the immunomodulatory effects are supposed to be mainly mediated by S1P1, some lines of evidence suggest that the agonist activity on S1P receptor 3 (S1P3) could cause acute toxicity and cardiovascular deregulation, including bradycardia in rodents (24, 25). Thus, CS-0777 was designed to have more selectivity on S1P1 over S1P3 in contrast to fingolimod-P which has potent agonistic activity for S1P3, S1P4, and S1P5 in vitro (22). Like fingolimod, CS-0777 is also a prodrug phosphorylated in vivo, and the phosphorylated CS-0777 (CS-0777-P, Fig. 1) agonizes S1P1 with more than 300-fold selectivity relative to S1P3 whereas CS-0777-P has weaker effects on S1P5 and no activity on S1P2 (23). CS-0777 showed immunosuppressive activity in mouse and rat models of experimental autoimmune encephalitis, animal models for multiple sclerosis. In healthy volunteers, single oral doses of CS-0777 caused marked, dose-dependent decreases in numbers of circulating lymphocytes, including marked and reversible decreases in circulating T and B cells (26). Furthermore, in multiple sclerosis patients, single oral doses of CS-0777 caused dose-dependent decreases in circulating lymphocytes, with a slightly greater suppression of CD4+ versus CD8+ T cells. Therefore, CS-0777 would alter immune responses solely through activation of S1P1 without S1P3 modulation in humans, which could circumvent a bradycardia adverse effect, although the relationships associating selectivity of S1P1 to S1P3 with bradycardia in humans are not fully understood (12).Orally administrated CS-0777 is phosphorylated and rapidly reaches equilibrium with CS-0777-P as in the case of fingolimod (22), suggesting that the high kinase activity in blood is balanced by phosphatases. Therefore, identification of a phosphatase, the inactivating enzyme of an active metabolite, as well as identification of a kinase, the activating enzyme of a prodrug, are critical to fully understand the mechanism of action at the molecular level for both CS-0777 and fingolimod. Sphingosine kinase 2 (SPHK2) was identified as the major kinase of fingolimod (21, 28, 29) and lipid phosphate phosphatase 3 (LPP3) was reported to be a phosphatase for fingolimod-P dephosphorylation (30), although contribution of LPP3 in vivo has not been fully studied. In our previous work, we have identified CS-0777 kinases in human blood as fructosamine 3-kinase-related protein (FN3K-RP) and fructosamine 3-kinase (FN3K) (6), whereas the phosphatase of CS-0777-P had not been identified thus far.In this study, we have successfully identified alkaline phosphatase, tissue-nonspecific isozyme (ALPL) as the major CS-0777-P phosphatase candidate in the human kidney by proteomic correlation profiling. According to available information, this is the first report applying proteomic correlation profiling to enzyme classes other than kinases; similarly, we believe this to be first application of proteomic correlation profiling to human tissue extract, which therefore has opened up wide usage of proteomic correlation profiling for all types of enzyme identification.  相似文献   
83.
Ligation, the joining of DNA fragments, is a fundamental procedure in molecular cloning and is indispensable to the production of genetically modified organisms that can be used for basic research, the applied biosciences, or both. Given that many genes cooperate in various pathways, incorporating multiple gene cassettes in tandem in a transgenic DNA construct for the purpose of genetic modification is often necessary when generating organisms that produce multiple foreign gene products. Here, we describe a novel method, designated PRESSO (precise sequential DNA ligation on a solid substrate), for the tandem ligation of multiple DNA fragments. We amplified donor DNA fragments with non-palindromic ends, and ligated the fragment to acceptor DNA fragments on solid beads. After the final donor DNA fragments, which included vector sequences, were joined to the construct that contained the array of fragments, the ligation product (the construct) was thereby released from the beads via digestion with a rare-cut meganuclease; the freed linear construct was circularized via an intra-molecular ligation. PRESSO allowed us to rapidly and efficiently join multiple genes in an optimized order and orientation. This method can overcome many technical challenges in functional genomics during the post-sequencing generation.  相似文献   
84.
85.
Narcolepsy patients often suffer from insomnia in addition to excessive daytime sleepiness. Narcoleptic animals also show behavioral instability characterized by frequent transitions between all vigilance states, exhibiting very short bouts of NREM sleep as well as wakefulness. The instability of wakefulness states in narcolepsy is thought to be due to deficiency of orexins, neuropeptides produced in the lateral hypothalamic neurons, which play a highly important role in maintaining wakefulness. However, the mechanism responsible for sleep instability in this disorder remains to be elucidated. Because firing of orexin neurons ceases during sleep in healthy animals, deficiency of orexins does not explain the abnormality of sleep. We hypothesized that chronic compensatory changes in the neurophysiologica activity of the locus coeruleus (LC) and dorsal raphe (DR) nucleus in response to the progressive loss of endogenous orexin tone underlie the pathological regulation of sleep/wake states. To evaluate this hypothesis, we examined firing patterns of serotonergic (5-HT) neurons and noradrenergic (NA) neurons in the brain stem, two important neuronal populations in the regulation of sleep/wakefulness states. We recorded single-unit activities of 5-HT neurons and NA neurons in the DR nucleus and LC of orexin neuron-ablated narcoleptic mice. We found that while the firing pattern of 5-HT neurons in narcoleptic mice was similar to that in wildtype mice, that of NA neurons was significantly different from that in wildtype mice. In narcoleptic mice, NA neurons showed a higher firing frequency during both wakefulness and NREM sleep as compared with wildtype mice. In vitro patch-clamp study of NA neurons of narcoleptic mice suggested a functional decrease of GABAergic input to these neurons. These alterations might play roles in the sleep abnormality in narcolepsy.  相似文献   
86.
87.
Type I IFNs are a range of host-derived molecules with adjuvant potential; they have been used for many years in the treatment of cancer and viral hepatitis. Therefore, the safety of IFNs for human use has been established. In this study, we evaluated the mucosal adjuvanticity of IFN-β administered intranasally to mice with diphtheria toxoid, and suggested a method to improve its adjuvanticity. When IFN-β alone was used as a mucosal adjuvant, no clear results were obtained. However, simultaneous administration of IFN-β and chitosan resulted in an enhancement of the specific serum immunoglobulin G (IgG) and IgA antibody responses, the mucosal IgA antibody response, and antitoxin titers. Furthermore, the intranasal administration of IFN-α alone resulted in a greater increase in antibody titer than IFN-β, and a synergistic effect with chitosan was also observed. These findings suggest that intranasal administration of chitosan and Type I IFNs may display an effective synergistic mucosal adjuvant activity.  相似文献   
88.
The aim of the present study was to investigate the responses of Merkel cells that are numerous in the palatine rugae, due to the continuous mechanical stimulation exerted by the palatal plate. Forty golden hamsters were used in this experiment. The palatal plate was made of adhesive resin and it was set on the palate of the animal. To exert a continuous pressure, a 0.8?mm elevation on the internal surface of the palatal plate was created at the middle portion of the fourth palatine ruga. Thereafter, the number of Merkel cells in the mucosa was calculated by immunohistochemical observation. Morphological changes of Merkel cells were examined by electron microscopy. There was significant difference among the control and any of the treated groups on the number of CK20 positive Merkel cells (p?<?0.05) and that numbers were decreased at the sites where continuous mechanical stimulation was exerted. Degeneration of the cytoplasm mitochondria and nerve endings, and a decrease in both the number of neurosecretory granules and cytoplasmic processes were observed. Furthermore, the presence of nuclear chromatin aggregation and fragmentation was recognized. The continuous mechanical stimulation by the palatal plate affected the responses of Merkel cells and nerve endings, thus inducing a decrease in the number of Merkel cells. A portion of these changes was also associated with the expression of apoptosis.  相似文献   
89.
Gene therapy is expected to treat various incurable diseases including viral infections, autoimmune disorders, and cancers. Cationic lipids (CL) have been used as carriers of therapeutic DNAs for gene therapy because they can form a complex with DNA and such a complex can be incorporated into cells and transport the bound DNA to cytosol. The CL/DNA complexes are called lipoplexes and categorized as a non-viral vector. Lipoplexes are often prepared by adding a neutral phospholipid dioleoylphosphatidylethanolamine (DOPE) to CL in order to enhance transfection. However, the role of DOPE is not fully understood. We synthesized a new CL having an ethylenediamine cationic head group, denoted by DA, and found that addition of DOPE to DA achieved a good efficiency, almost in the similar level of commonly used transfection reagent Lipofectamine 2000 (Invitrogen). The composition of DA:DOPE = 1:1 showed the highest efficiency. This lipoplex showed structural transition when pH was changed from 7 to 4, corresponding pH lowering in late endosome, while DOPE itself showed structural transition at more basic pH around 8. The present data showed that the DOPE/DA composition determines the structural transition pH and choosing a suitable pH, i.e., a suitable composition, is essential to increase the transfection efficiency.  相似文献   
90.
The pullulanase gene (pul) of Klebsiella aerogenes was transferred in vivo to Escherichia coli by using RP4:: Mu cts. The pul gene was expressed in E. coli, although the level of pullulanase activity in E. coli was lower than that in K. aerogenes, and the Pul+ transconjugants were relatively unstable in an unselective medium. Production of pullulanase, which is used to make maltose from starch, was induced in E. coli by pullulan, waxy maize amylopectin, soluble starch and maltose. When the transconjugant cells of E. coli were grown with pullulan or maltose, most pullulanase was produced intracellularly, whereas K. aerogenes produced pullulanase extracellularly. Retransfer of the pulk gene from E. coli to K. aerogenes by conjugation resulted in an increase of the production of extracellular pullulanase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号