首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   12篇
  2021年   3篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   7篇
  2011年   7篇
  2010年   2篇
  2009年   1篇
  2008年   6篇
  2007年   2篇
  2006年   6篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   7篇
  2001年   2篇
  2000年   9篇
  1999年   3篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1988年   2篇
  1980年   1篇
  1977年   2篇
排序方式: 共有87条查询结果,搜索用时 31 毫秒
11.
The role of the putative fourth cytoplasmic loop of rhodopsin in the binding and catalytic activation of the heterotrimeric G protein, transducin (G(t)), is not well defined. We developed a novel assay to measure the ability of G(t), or G(t)-derived peptides, to inhibit the photoregeneration of rhodopsin from its active metarhodopsin II state. We show that a peptide corresponding to residues 340-350 of the alpha subunit of G(t), or a cysteinyl-thioetherfarnesyl peptide corresponding to residues 50-71 of the gamma subunit of G(t), are able to interact with metarhodopsin II and inhibit its photoconversion to rhodopsin. Alteration of the amino acid sequence of either peptide, or removal of the farnesyl group from the gamma-derived peptide, prevents inhibition. Mutation of the amino-terminal region of the fourth cytoplasmic loop of rhodopsin affects interaction with G(t) (Marin, E. P., Krishna, A. G., Zvyaga T. A., Isele, J., Siebert, F., and Sakmar, T. P. (2000) J. Biol. Chem. 275, 1930-1936). Here, we provide evidence that this segment of rhodopsin interacts with the carboxyl-terminal peptide of the alpha subunit of G(t). We propose that the amino-terminal region of the fourth cytoplasmic loop of rhodopsin is part of the binding site for the carboxyl terminus of the alpha subunit of G(t) and plays a role in the regulation of betagamma subunit binding.  相似文献   
12.
Tctex-1, a light-chain component of the cytoplasmic dynein motor complex, can function independently of dynein to regulate multiple steps in neuronal development. However, how dynein-associated and dynein-free pools of Tctex-1 are maintained in the cell is not known. Tctex-1 was recently identified as a Gbetagamma-binding protein and shown to be identical to the receptor-independent activator of G protein signaling AGS2. We propose a novel role for the interaction of Gbetagamma with Tctex-1 in neurite outgrowth. Ectopic expression of either Tctex-1 or Gbetagamma promotes neurite outgrowth whereas interfering with their function inhibits neuritogenesis. Using embryonic mouse brain extracts, we demonstrate an endogenous Gbetagamma-Tctex-1 complex and show that Gbetagamma co-segregates with dynein-free fractions of Tctex-1. Furthermore, Gbeta competes with the dynein intermediate chain for binding to Tctex-1, regulating assembly of Tctex-1 into the dynein motor complex. We propose that Tctex-1 is a novel effector of Gbetagamma, and that Gbetagamma-Tctex-1 complex plays a key role in the dynein-independent function of Tctex-1 in regulating neurite outgrowth in primary hippocampal neurons, most likely by modulating actin and microtubule dynamics.  相似文献   
13.
The visual pigment rhodopsin is a prototypical seven transmembrane helical G protein-coupled receptor. Photoisomerization of its protonated Schiff base (PSB) retinylidene chromophore initiates a progression of metastable intermediates. We studied the structural dynamics of receptor activation by FTIR spectroscopy of recombinant pigments. Formation of the active state, Meta II, is characterized by neutralization of the PSB and its counterion Glu113. We focused on testing the hypothesis of a PSB counterion switch from Glu113 to Glu181 during the transition of rhodopsin to the still inactive Meta I photointermediate. Our results, especially from studies of the E181Q mutant, support the view that both Glu113 and Glu181 are deprotonated, forming a complex counterion to the PSB in rhodopsin, and that the function of the primary counterion shifts from Glu113 to Glu181 during the transition to Meta I. The Meta I conformation in the E181Q mutant is less constrained compared with that of wild-type Meta I. In particular, the hydrogen bonded network linking transmembrane helices 1, 2, and 7, adopts a conformation that is already Meta II-like, while other parts of the receptor appear to be in a Meta I-like conformation similar to wild-type. We conclude that Glu181 is responsible, in part, for controlling the extraordinary high pK(a) of the chromophore PSB in the dark state, which very likely decreases upon transition to Meta I in a stepwise weakening of the interaction between PSB and its complex counterion during the course of receptor activation. A model for the specific role in coupling chromophore isomerization to protein conformational changes concomitant with receptor activation is presented.  相似文献   
14.
Lewis JW  Szundi I  Kazmi MA  Sakmar TP  Kliger DS 《Biochemistry》2004,43(39):12614-12621
The role of glutamic acid 181 in the bovine rhodopsin retinylidene chromophore pocket was studied by expressing E181 mutants in COS cells and measuring, as a function of time, the absorbance changes produced after excitation of lauryl maltoside pigment suspensions with 7 ns laser pulses. All mutants studied except E181D showed accelerated decay of bathorhodopsin compared to wild type. Even for E181D, an anomalously large blue shift was observed in the absorption spectrum of the bathorhodopsin decay product, BSI. These observations support the idea that E181 plays a significant role in the earliest stages of receptor activation. E181 mutations have a pronounced effect on the decay of the lumirhodopsin photointermediate, primarily affecting the size of the red shift that occurs in the lumirhodopsin I to lumirhodopsin II transition that takes place on the 10 micros time scale after wild-type photoexcitation. While the spectral change that occurs in the lumirhodopsin I to lumirhodopsin II transition in wild-type rhodopsin is very small ( approximately 2 nm), making it difficult to detect, it is larger in E181D ( approximately 6 nm), making it evident even in the lower signal-to-noise ratio measurements possible with rhodopsin mutants. The change seen is even larger for the E181F mutant where significant amounts of a deprotonated Schiff base intermediate are produced with the 10 micros time constant of lumirhodopsin II formation. The E181Q mutant shows lumirhodopsin decay more similar to wild-type behavior, and no lumirhodopsin I to lumirhodopsin II transition can be resolved. The addition of chloride ion to E181Q increases the lumirhodopsin I-lumirhodopsin II spectral shift and slows the deprotonation of the Schiff base. The latter result is consistent with the idea that a negative charge at position 181 contributes to protonated Schiff base stability in the later intermediates.  相似文献   
15.
16.
Human apolipoprotein A-I (apo A-I) and its engineered constructs form discoidal lipid bilayers upon interaction with lipids in vitro. We now report the cloning, expression, and purification of apo A-I derived from zebrafish (Danio rerio), which combines with phospholipids to form similar discoidal bilayers and may prove to be superior to human apo A-I constructs for rapid reconstitution of seven-transmembrane helix receptors into nanoscale apolipoprotein bound bilayers (NABBs). We characterized NABBs by gel-filtration chromatography, native polyacrylamide gradient gel electrophoresis, UV-visible photobleaching difference spectroscopy, and fluorescence spectroscopy. We used electron microscopy to determine the stoichiometry and orientation of rhodopsin (rho)-containing NABBs prepared under various conditions and correlated stability and signaling efficiency of rho in NABBs with either one or two receptors. We discovered that the specific activity of G protein coupling for single rhos sequestered in individual NABBs was nearly identical with that of two rhos per NABB under conditions where stoichiometry and orientation could be inferred by electron microscopy imaging. Thermal stability of rho in NABBs was superior to that of rho in various commonly used detergents. We conclude that the NABB system using engineered zebrafish apo A-I is a native-like membrane mimetic system for G-protein-coupled receptors and discuss strategies for rapid incorporation of expressed membrane proteins into NABBs.  相似文献   
17.
How color visual pigments are tuned.   总被引:1,自引:0,他引:1  
The absorption maximum of the retinal chromophore in color visual pigments is tuned by interactions with the protein (opsin) to which it is bound. Recent advances in the expression of rhodopsin-like transmembrane receptors and in spectroscopic techniques have allowed us to measure resonance Raman vibrational spectra of the retinal chromophore in recombinant visual pigments to examine the molecular basis of this spectral tuning. The dominant physical mechanism responsible for the opsin shift in color vision is the interaction of dipolar amino acid residues with the ground- and excited-state charge distributions of the chromophore.  相似文献   
18.
Tyrosine sulfation of the chemokine receptor CXCR4 enhances its interaction with the chemokine SDF-1alpha. Given similar post-translational modification of other receptors, including CCR5, CX3CR1 and CCR2b, tyrosine sulfation may be of universal importance in chemokine signaling. N-terminal domains from seven transmembrane chemokine receptors have been employed for structural studies of chemokine-receptor interactions, but never in the context of proper post-translational modifications known to affect function. A CXCR4 peptide modified at position 21 by expressed tyrosylprotein sulfotransferase-1 and unmodified peptide are both disordered in solution, but bind SDF-1alpha with low micromolar affinities. NMR and fluorescence polarization measurements showed that the CXCR4 peptide stabilizes dimeric SDF-1alpha, and that sulfotyrosine 21 binds a specific site on the chemokine that includes arginine 47. We conclude that the SDF-1alpha dimer preferentially interacts with receptor peptide, and residues beyond the extreme N-terminal region of CXCR4, including sulfotyrosine 21, make specific contacts with the chemokine ligand.  相似文献   
19.
The inherent instability of heptahelical G protein-coupled receptors (GPCRs) during purification and reconstitution is a primary impediment to biophysical studies and to obtaining high-resolution crystal structures. New approaches to stabilizing receptors during purification and screening reconstitution procedures are needed. Here we report the development of a novel homogeneous time-resolved fluorescence assay (HTRF) to quantify properly folded CC-chemokine receptor 5 (CCR5). The assay permits high-throughput thermal stability measurements of femtomole quantities of CCR5 in detergent and in engineered nanoscale apolipoprotein-bound bilayer (NABB) particles. We show that recombinantly expressed CCR5 can be incorporated into NABB particles in high yield, resulting in greater thermal stability compared with that of CCR5 in a detergent solution. We also demonstrate that binding of CCR5 to the HIV-1 cellular entry inhibitors maraviroc, AD101, CMPD 167, and vicriviroc dramatically increases receptor stability. The HTRF assay technology reported here is applicable to other membrane proteins and could greatly facilitate structural studies of GPCRs.  相似文献   
20.
A microprobe system has been developed that can record Raman spectra from as little as 2 microL of solution containing only micrograms of biological pigments. The apparatus consists of a liquid nitrogen (l-N2)-cooled cold stage, an epi-illumination microscope, and a substractive-dispersion, double spectrograph coupled to a l-N2-cooled CCD detector. Experiments were performed on native bovine rhodopsin, rhodopsin expressed in COS cells, and four rhodopsin mutants: Glu134 replaced by Gln (E134Q), Glu122 replaced by Gln (E122Q), and Glu113 replaced by Gln (E113Q) or Ala (E113A). Resonance Raman spectra of photostationary steady-state mixtures of 11-cis-rhodopsin, 9-cis-isorhodopsin, and all-trans-bathorhodopsin at 77 K were recorded. The Raman spectra of E134Q and the wild-type are the same, indicating that Glu134 is not located near the chromophore. Substitution at Glu122 also does not affect the C = NH stretching vibration of the chromophore. The fingerprint and Schiff base regions of the Raman spectra of the 380-nm, pH 7 forms of E113Q and E113A are characteristic of unprotonated retinal Schiff bases. The C = NH modes of the approximately 500-nm, pH 5 forms of E113Q and E113A in H2O (D2O) are found at 1648 (1629) and 1645 (1630) cm-1, respectively. These frequencies indicate that the protonated Schiff base interacts more weakly with its protein counterion in the Glu113 mutants than it does in the native pigment. Furthermore, perturbations of the unique bathorhodopsin hydrogen out-of-plane (HOOP) vibrations in E113Q and E113A indicate that the strength of the protein perturbation near C12 is weakened compared to that in native bathorhodopsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号