首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   19篇
  2021年   4篇
  2020年   4篇
  2019年   1篇
  2018年   4篇
  2017年   6篇
  2016年   7篇
  2015年   12篇
  2014年   12篇
  2013年   16篇
  2012年   19篇
  2011年   15篇
  2010年   15篇
  2009年   7篇
  2008年   16篇
  2007年   16篇
  2006年   10篇
  2005年   18篇
  2004年   15篇
  2003年   9篇
  2002年   7篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1978年   2篇
  1973年   1篇
  1967年   1篇
排序方式: 共有241条查询结果,搜索用时 31 毫秒
241.
BACKGROUND: Metabolomics, i.e., the multiparallel analysis of metabolite changes occurring in a cell or an organism, has become feasible with the development of highly efficient mass spectroscopic technologies. Functional genomics as a standard tool helped to identify the function of many of the genes that encode important transporters and metabolic enzymes over the past few years. Advanced expression systems and analysis technologies made it possible to study the biochemical properties of the corresponding proteins in great detail. We begin to understand the biological functions of the gene products by systematic analysis of mutants using systematic PTGS/RNAi, knockout and TILLING approaches. However, one crucial set of data especially relevant in the case of multicellular organisms is lacking: the knowledge of the spatial and temporal profiles of metabolite levels at cellular and subcellular levels. METHODS: We therefore developed genetically encoded nanosensors for several metabolites to provide a basic set of tools for the determination of cytosolic and subcellular metabolite levels in real time by using fluorescence microscopy. RESULTS: Prototypes of these sensors were successfully used in vitro and also in vivo, i.e., to measure sugar levels in fungal and animal cells. CONCLUSIONS: One of the future goals will be to expand the set of sensors to a wider spectrum of substrates by using the natural spectrum of periplasmic binding proteins from bacteria and by computational design of proteins with altered binding pockets in conjunction with mutagenesis. This toolbox can then be applied for four-dimensional imaging of cells and tissues to elucidate the spatial and temporal distribution of metabolites as a discovery tool in functional genomics, as a tool for high-throughput, high-content screening for drugs, to test metabolic models, and to analyze the interplay of cells in a tissue or organ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号