首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   4篇
  国内免费   1篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   5篇
  2015年   9篇
  2014年   6篇
  2013年   2篇
  2012年   8篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  1988年   1篇
  1986年   2篇
排序方式: 共有71条查询结果,搜索用时 18 毫秒
61.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), rapidly spread across the world in late 2019, leading to a pandemic. While SARS-CoV-2 infections predominately affect the respiratory system, severe infections can lead to renal and cardiac injury and even death. Due to its highly transmissible nature and severe health implications, animal models of SARS-CoV-2 are critical to developing novel therapeutics and preventatives. Syrian hamsters (Mesocricetus auratus) are an ideal animal model of SARS-CoV-2 infections because they recapitulate many aspects of human infections. After inoculation with SARS-CoV-2, hamsters become moribund, lose weight, and show varying degrees of respiratory disease, lethargy, and ruffled fur. Histopathologically, their pulmonary lesions are consistent with human infections including interstitial to broncho-interstitial pneumonia, alveolar hemorrhage and edema, and granulocyte infiltration. Similar to humans, the duration of clinical signs and pulmonary pathology are short lived with rapid recovery by 14 d after infection. Immunocompromised hamsters develop more severe infections and mortality. Preclinical studies in hamsters have shown efficacy of therapeutics, including convalescent serum treatment, and preventatives, including vaccination, in limiting or preventing clinical disease. Although hamster studies have contributed greatly to our understanding of the pathogenesis and progression of disease after SARS-CoV-2 infection, additional studies are required to better characterize the effects of age, sex, and virus variants on clinical outcomes in hamsters. This review aims to describe key findings from studies of hamsters infected with SARS-CoV-2 and to highlight areas that need further investigation.

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel betacoronavirus that was first detected in Wuhan, China at the end of 2019.31 Coronavirus infections predominantly present with either respiratory or gastrointestinal manifestations, depending on the strain and host. While many coronavirus infections result in mild clinical symptoms, SARS-CoV-2 is highly pathogenic and poses significant health concerns.31,58,78 Although initial clinical signs are attributed to the respiratory system, severe infections result in systemic complications, such as acute cardiac and renal injury, secondary infections, and shock.31,58SARS-CoV-2 relies on a structural surface spike glycoprotein to establish infection. The spike protein binds to the angiotensin-converting enzyme 2 (ACE2) receptor on host cells to gain entry in a receptor-mediated fashion. This interaction facilitates both human-to-human transmission and cross-species infection.77 Species tropism is determined by the presence of ACE2 residues that recognize the SARS-CoV-2 spike protein. Animals permissive for SARS-CoV-2 infection include cats, ferrets, pigs, nonhuman primates, select genetically modified mice, and hamsters.5,7,23,37,67 Susceptible species can be both intermediate hosts and sources of infection of SARS-CoV-2 for humans.77 Rodents, such as mice and hamsters, are ideal models for the study of COVID-19 due to their small size, ready availability, low cost of care, SPF status, and in-depth characterization across a variety of translational models, including past and present betacoronavirus infections.60,61 Although transgenic mice expressing human ACE2 are susceptible to SARS-CoV-2 infection, Syrian hamsters (Mesocricetus auratus) naturally express ACE2 residues that recognize the SARS-CoV-2 spike protein.5,46,84 As such, Syrian hamsters are a valuable animal model for studying COVID-19.Syrian hamsters, commonly referred to as golden hamsters, belong to the family Cricetidae and have a natural geographic range of arid southeast Europe and Asia Minor. Additional members of the Cricetidae family used in biomedical research include Chinese hamsters (Cricetulus griseus), European hamsters (Cricetus cricetus), Armenian hamsters (Cricetulus migratorius), and dwarf hamsters (Phodopus species). Unless otherwise noted, any mention of hamsters in this overview refers to Syrian hamsters. Laboratory hamsters primarily originated from one Syrian litter captured in 1930. Progeny of this litter were first imported into the United States in 1938.50 Outbred Syrian hamsters are widely available; recently developed transgenic hamsters are increasingly used in biomedical research and may provide unique insight into SARS-CoV-2 infections.22,44 Syrian hamsters have a rich history in biomedical research and can be used to model cancer and infectious, metabolic, cardiovascular, and respiratory diseases.50Hamsters play an important role in SARS-CoV-2 studies. This is due, in part, to their susceptibility to the first described highly pathogenic coronavirus infection in the 21st century, severe acute respiratory syndrome (SARS-CoV). SARS-CoV emerged in late 2002 in Southern China. Although individuals in more than 20 countries contracted SARS-CoV, the spread was quickly contained, with the last reported case in July 2003.16,40 After experimental infection with SARS-CoV, hamsters developed high viral loads in the lungs and nasal turbinates.15,32,56,62,69 Pulmonary pathology included inflammation, cell necrosis, and consolidation without clinical signs of disease.61 Based on their susceptibility to SARS-CoV and natural expression of ACE2 capable of recognizing the SARS-CoV-2 spike protein, hamsters have been a preferred model of SARS-CoV-2. Hamster studies have replicated key aspects of SARS-CoV-2 infections in humans, including viral replication, transmission, and pathology. Furthermore, hamsters are a model organism for developing and testing novel preventions and therapeutics. However, using hamsters in biomedical research has several key limitations, including the lack of reagents, especially antibodies, suitable for use with hamster tissue and the relatively few established transgenic hamsters compared to mice. The purpose of this review is to describe key findings of hamster models of SARS-CoV-2 and to highlight gaps in our current understanding that will require further investigation.  相似文献   
62.
The effects of abscisic acid (ABA) on growth, uptake and translocation of potassium ions, K+,Mg2+-ATPase activity and transpiration were investigated in young wheat ( Triticum aestivum L. cv. Martonvásári-8) plants grown at different K+ supplies. Long-term treatment with ABA (10 μ M ) reduced growth in high-K+ plants, but had less effect under low-K+ conditions. K+(86Rb) uptake was inhibited by about 70 and 40% in low- and high-K+ plants, respectively. The stimulation by K+ of the Mg2+-ATPase activity in the root microsomal fraction was lost with ABA treatment. It is suggested that the inhibitory effect of ABA on K+ uptake may be related to this effects on the K+,Mg2+-ATPase. Translocation of K+ to the shoot was inhibited in low-K+ plants only, and it was not affected in high-K+ plants. In parallel to this, ABA treatment reduced transpiration by about 50% in low-K+ plants, whereas a much smaller effect was seen in high-K+ plants. These observations suggest that the regulation by ABA of the stomatal movements is strongly counteracted by high-K+ status.  相似文献   
63.
Cadmium is an environmental and industrial pollutant that affects the male reproductive system of humans and animals. However, the mechanism of its adverse effect on Leydig cell steroidogenesis remains unknown. The present study points to the possible involvement of oxidative stress in the suppression of steroidogenesis. Cadmium administration caused an increase in reactive oxygen species (ROS) by elevating testicular malondialdehyde (MDA) and decreasing the activities of testicular antioxidant enzymes such as glutathione peroxidase and superoxide dismutase. The mRNA of Steroid Acute Regulatory (StAR) protein was substantially reduced. The activities of testicular delta5-3beta and 17-beta-hydroxysteroid dehydrogenases (HSD) as well as serum testosterone level were also lowered, suggesting that cadmium-induced ROS inhibit testicular steroidogenesis. Supplementation with vitamin C (VC) and or vitamin E (VE) reduced testicular ROS and restored normal testicular function in Cd-exposed rats. We conclude that VC and VE prevent oxidative stress and play vital roles in co-regulating StAR gene expression and steroid production in cadmium-exposed rats.  相似文献   
64.
Spores of thermophilic Geobacillus species are a common contaminant of milk powder worldwide due to their ability to form biofilms within processing plants. Genotyping methods can provide information regarding the source and monitoring of contamination. A new genotyping method was developed based on multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) in conjunction with high-resolution melt analysis (MLV-HRMA) and compared to the currently used method, randomized amplified polymorphic DNA PCR (RAPD-PCR). Four VNTR loci were identified and used to genotype 46 Geobacillus isolates obtained from retailed powder and samples from 2 different milk powder processing plants. These 46 isolates were differentiated into 16 different groups using MLV-HRMA (D = 0.89). In contrast, only 13 RAPD-PCR genotypes were identified among the 46 isolates (D = 0.79). This new method was then used to analyze 35 isolates obtained from powders with high spore counts (>10(4) spores · g(-1)) from a single processing plant together with 27 historical isolates obtained from powder samples processed in the same region of Australia 17 years ago. Results showed that three genotypes can coexist in a single processing run, while the same genotypes observed 17 years ago are present today. While certain genotypes could be responsible for powders with high spore counts, there was no correlation to specific genotypes being present in powder plants and retailed samples. In conclusion, the MLV-HRMA method is useful for genotyping Geobacillus spp. to provide insight into the prevalence and persistence of certain genotypes within milk powder processing plants.  相似文献   
65.
The repair of double-stranded DNA breaks via homologous recombination involves a four-way cross-strand intermediate known as Holliday junction (HJ), which is recognized, processed, and resolved by a specific set of proteins. RuvA, a prokaryotic HJ-binding protein, is known to stabilize the square-planar conformation of the HJ, which is otherwise a short-lived intermediate. Despite much progress being made regarding the molecular mechanism of RuvA-HJ interactions, the mechanochemical aspect of this protein-HJ complex is yet to be investigated. Here, we employed an optical-tweezers-based, single-molecule manipulation assay to detect the formation of RuvA-HJ complex and determined its mechanical and thermodynamic properties in a manner that would be impossible with traditional ensemble techniques. We found that the binding of RuvA increases the unfolding force (Funfold) of the HJ by ~2-fold. Compared with the ΔGunfold of the HJ alone (54 ± 13 kcal/mol), the increased free energy of the RuvA-HJ complex (101 ± 20 kcal/mol) demonstrates that the RuvA protein stabilizes HJs. Interestingly, the protein remains bound to the mechanically melted HJ, facilitating its refolding at an unusually high force when the stretched DNA molecule is relaxed. These results suggest that the RuvA protein not only stabilizes the HJs but also induces refolding of the HJs. The single-molecule platform that we employed here for studying the RuvA-HJ interaction is broadly applicable to study other HJ-binding proteins involved in the critical DNA repair process.  相似文献   
66.
Assess whether Medicare data are useful for monitoring tissue allograft safety and utilization. We used health care claims (billing) data from 2007 for 35 million fee-for-service Medicare beneficiaries, a predominantly elderly population. Using search terms for transplant-related procedures, we generated lists of ICD-9-CM and CPT® codes and assessed the frequency of selected allograft procedures. Step 1 used inpatient data and ICD-9-CM procedure codes. Step 2 added non-institutional provider (e.g., physician) claims, outpatient institutional claims, and CPT codes. We assembled preliminary lists of diagnosis codes for infections after selected allograft procedures. Many ICD-9-CM codes were ambiguous as to whether the procedure involved an allograft. Among 1.3 million persons with a procedure ascertained using the list of ICD-9-CM codes, only 1,886 claims clearly involved an allograft. CPT codes enabled better ascertainment of some allograft procedures (over 17,000 persons had corneal transplants and over 2,700 had allograft skin transplants). For spinal fusion procedures, CPT codes improved specificity for allografts; of nearly 100,000 patients with ICD-9-CM codes for spinal fusions, more than 34,000 had CPT codes indicating allograft use. Monitoring infrequent events (infections) after infrequent exposures (tissue allografts) requires large study populations. A strength of the large Medicare databases is the substantial number of certain allograft procedures. Limitations include lack of clinical detail and donor information. Medicare data can potentially augment passive reporting systems and may be useful for monitoring tissue allograft safety and utilization where codes clearly identify allograft use and coding algorithms can effectively screen for infections.  相似文献   
67.
The spore-forming bacterium Bacillus licheniformis is a common contaminant of milk and milk products. Strains of this species isolated from dairy products can be differentiated into three major groups, namely, G, F1, and F2, using random amplification of polymorphic DNA (RAPD) analysis; however, little is known about the genomic differences between these groups and the identity of the fragments that make up their RAPD profiles. In this work we obtained high-quality draft genomes of representative strains from each of the three RAPD groups (designated strain G-1, strain F1-1, and strain F2-1) and compared them to each other and to B. licheniformis ATCC 14580 and Bacillus subtilis 168. Whole-genome comparison and multilocus sequence typing revealed that strain G-1 contains significant sequence variability and belongs to a lineage distinct from the group F strains. Strain G-1 was found to contain genes coding for a type I restriction modification system, urease production, and bacitracin synthesis, as well as the 8-kbp plasmid pFL7, and these genes were not present in strains F1-1 and F2-1. In agreement with this, all isolates of group G, but no group F isolates, were found to possess urease activity and antimicrobial activity against Micrococcus. Identification of RAPD band sequences revealed that differences in the RAPD profiles were due to differences in gene lengths, 3′ ends of predicted primer binding sites, or gene presence or absence. This work provides a greater understanding of the phylogenetic and phenotypic differences observed within the B. licheniformis species.  相似文献   
68.
Secondary metabolites enable plants to protect themselves from herbivorous insects. Among these, cucurbitacin B (cuc-B) is a bitter-tasting compound with promising pharmacological potential. Dietary exposure to cuc-B lowered the hemolymph glucose levels of Drosophila melanogaster fed with a high carbohydrate diet, which is homologous to high blood glucose in humans, and its effect was comparable to that of metformin, a well-known glucose-lowering drug. Furthermore, cuc-B reduced tissue sugar levels and glycogen levels, as well as triacylglycerol levels. Our results thus highlight the potential applicability of this compound to treat chronic metabolic diseases such as diabetes and obesity. Additionally, we analyzed sleep quality and taste-associative memory enhancement after cuc-B and metformin treatment. Both supplements increased nighttime bout length and metformin increased memory consolidation. Therefore, discarded shell of Cucurbitaceae could be processed into health supplements.  相似文献   
69.
70.
Applied Microbiology and Biotechnology - Two plant-originated C-glucosyltransferases (CGTs) UGT708D1 from Glycine max and GtUF6CGT1 from Gentiana triflora were accessed for glucosylation of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号