首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1085篇
  免费   59篇
  国内免费   4篇
  2023年   11篇
  2022年   36篇
  2021年   62篇
  2020年   29篇
  2019年   30篇
  2018年   49篇
  2017年   43篇
  2016年   44篇
  2015年   50篇
  2014年   63篇
  2013年   78篇
  2012年   78篇
  2011年   61篇
  2010年   35篇
  2009年   45篇
  2008年   48篇
  2007年   47篇
  2006年   39篇
  2005年   26篇
  2004年   36篇
  2003年   27篇
  2002年   19篇
  2001年   15篇
  2000年   21篇
  1999年   9篇
  1998年   6篇
  1997年   10篇
  1996年   8篇
  1994年   7篇
  1993年   3篇
  1992年   6篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1987年   5篇
  1986年   6篇
  1984年   3篇
  1983年   9篇
  1982年   9篇
  1981年   13篇
  1980年   6篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
  1973年   4篇
  1971年   2篇
  1968年   2篇
  1967年   3篇
排序方式: 共有1148条查询结果,搜索用时 15 毫秒
111.
Suppressor of cytokine signaling (SOCS) proteins have emerged as important regulators of cytokine signals in lymphocytes. In this study, we have investigated regulation of SOCS expression and their role in Th cell growth and differentiation. We show that SOCS genes are constitutively expressed in naive Th cells, albeit at low levels, and are differentially induced by Ag and Th-polarizing cytokines. Whereas cytokines up-regulate expression of SOCS1, SOCS2, SOCS3, and cytokine-induced Src homology 2 protein, Ags induce down-regulation of SOCS3 within 48 h of Th cell activation and concomitantly up-regulate SOCS1, SOCS2, and cytokine-induced Src homology 2 protein expression. We further show that STAT1 signals play major roles in inducing SOCS expression in Th cells and that induction of SOCS expression by IL-4, IL-12, or IFN-gamma is compromised in STAT1-deficient primary Th cells. Surprisingly, IL-4 is a potent inducer of STAT1 activation in Th2 but not Th1 cells, and SOCS1 or SOCS3 expression is dramatically reduced in STAT1(-/-) Th2 cells. To our knowledge, this is the first report of IL-4-induced STAT1 activation in Th cells, and suggests that its induction of SOCS, may in part, regulate IL-4 functions in Th2 cells. In fact, overexpression of SOCS1 in Th2 cells represses STAT6 activation and profoundly inhibits IL-4-induced proliferation, while depletion of SOCS1 by an anti-sense SOCS1 cDNA construct enhances cell proliferation and induces constitutive activation of STAT6 in Th2 cells. These results are consistent with a model where IL-4 has dual effects on differentiating T cells: it simulates proliferation/differentiation through STAT6 and autoregulates its effects on Th2 growth and effector functions via STAT1-dependent up-regulation of SOCS proteins.  相似文献   
112.
Iron transport into the CNS is still not completely understood. Using a brain perfusion technique in rats, we have shown a significant brain capillary uptake of circulating transferrin (Tf)-bound and free 59Fe (1 nm) at rates of 136 +/- 26 and 182 +/- 23 microL/g/min, respectively, while their respective transport rates into brain parenchyma were 1.68 +/- 0.56 and 1.52 +/- 0.48 microL/g/min. Regional Tf receptor density (Bmax) in brain endothelium determined with 125I-holo-Tf correlated well with 59Fe-Tf regional brain uptake rates reflecting significant vascular association of iron. Tf-bound and free circulating 59Fe were sequestered by the choroid plexus and transported into the CSF at low rates of 0.17 +/- 0.01 and 0.09 +/- 0.02 microL/min/g, respectively, consistent with a 10-fold brain-CSF concentration gradient for 59Fe, Tf-bound or free. We conclude that transport of circulating Tf-bound and free iron could be equally important for its delivery to the CNS. Moreover, data suggest that entry of Tf-bound and free iron into the CNS is determined by (i) its initial sequestration by brain capillaries and choroid plexus, and (ii) subsequent controlled and slow release from vascular structures into brain interstitial fluid and CSF.  相似文献   
113.
Gastrointestinal malignancies account for about 20% of all cancers worldwide. It is widely accepted that cancer evolves through several stepwise morphological stages such as the adenoma-carcinoma and hyperplastic polyp-serrated adenoma-carcinoma sequences in colorectal cancers, and the metaplasia-dysplasia-carcinoma sequences in esophageal and gastric cancers. The morphological progression is associated with the accumulation of multiple genetic and epigenetic events. It is now recognized that epigenetic silencing of gene expression by CpG island methylation is an important alternative mechanism of inactivating tumor suppressor genes. Inflammatory conditions of the gastrointestinal and pancreaticobiliary tracts and liver such as Barrett esophagus, Helicobacter pylori gastritis, inflammatory bowel disease and viral hepatitis, are associated with increased frequency of malignancies and CpG methylation. In addition, CpG methylation is present in aberrant crypt foci and pancreatic intraepithelial neoplasia that are considered putative precursors of colon and pancreatic carcinomas, respectively. Understanding of these early genetic and epigenetic changes allows for the discoveries of potential screening, monitoring and therapeutic strategies. Targeting of the epigenetic changes that occur before the development of frank malignancy offers a potential chemopreventive strategy.  相似文献   
114.
Proteases are a ubiquitous group of enzymes that play key roles in the life cycle of parasites, in the host-parasite relationship, and in the pathogenesis of parasitic diseases. Furthermore, proteases are druggable targets for the development of new anti-parasitic therapy. The subtilisin protease (SUB; Clan SB, family S8) of Leishmania donovani was cloned and found to possess a unique catalytic triad. This gene was then deleted by gene knock-out, which resulted in reduced ability by the parasite to undergo promastigote to amastigote differentiation in vitro. Electron microscopy of SUB knock-out amastigotes revealed abnormal membrane structures, retained flagella, and increased binucleation. SUB-deficient Leishmania displayed reduced virulence in both hamster and murine infection models. Histology of spleens from SUB knock-out-infected hamsters revealed the absence of psammoma body calcifications indicative of the granulomatous lesions that occur during Leishmania infection. To delineate the specific role of SUB in parasite physiology, two-dimensional gel electrophoresis was carried out on SUB−/− versus wild-type parasites. SUB knock-out parasites showed altered regulation of the terminal peroxidases of the trypanothione reductase system. Leishmania and other trypanosomatids lack glutathione reductase, and therefore rely on the novel trypanothione reductase system to detoxify reactive oxygen intermediates and to maintain redox homeostasis. The predominant tryparedoxin peroxidases were decreased in SUB−/− parasites, and higher molecular weight isoforms were present, indicating altered processing. In addition, knock-out parasites showed increased sensitivity to hydroperoxide. These data suggest that subtilisin is the maturase for tryparedoxin peroxidases and is necessary for full virulence.  相似文献   
115.
In the present study, two phytocystatins were purified to homogeneity as peaks I and II with molecular weights of 19 kDa and 17 kDa, respectively, as determined by SDS-PAGE and mass spectrometry. Both PMCs I and II were purified with a greater than 1000-fold purification and overall yield of about 16-18%. The effect of urea on PMC I and II was analysed by fluorescence and Circular Dichroism (CD) spectroscopy. Fluorescence studies suggest a red shift of the maximum emission at higher urea concentrations. PMC I and II are extremely stable protein inhibitors with regards to temperature and pH stability. FTIR studies show predominant alpha-helical structure in both the cystatins. CD analysis results show change in urea concentration-dependent loss in ellipticity, as well as in the shape of the CD spectrum compared to the intact phytocystatin.  相似文献   
116.
Potassium channels are one of the fundamental requirements for the generation of action potentials in the nervous system, and their characteristics shape the output of neurons in response to synaptic input. We review here the distribution and function of a high-threshold potassium channel (Kv3.3) in the electrosensory lateral line lobe of the weakly electric fish Apteronotus leptorhynchus, with particular focus on the pyramidal cells in this brain structure. These cells contain both high-threshold Kv3.3 channels, as well as low-threshold potassium channels of unknown molecular identity. Kv3.3 potassium channels regulate burst discharge in pyramidal cells and enable sustained high frequency firing through their ability to reduce an accumulation of low-threshold potassium current.W. H. Mehaffey and F. R. Fernandez contributed equally to this work.  相似文献   
117.
H/ACA RNA-protein complexes, comprised of four proteins and an H/ACA guide RNA, modify ribosomal and small nuclear RNAs. The H/ACA proteins are also essential components of telomerase in mammals. Cbf5 is the H/ACA protein that catalyzes isomerization of uridine to pseudouridine in target RNAs. Mutations in human Cbf5 (dyskerin) lead to dyskeratosis congenita. Here, we describe the 2.1 A crystal structure of a specific complex of three archaeal H/ACA proteins, Cbf5, Nop10, and Gar1. Cbf5 displays structural properties that are unique among known pseudouridine synthases and are consistent with its distinct function in RNA-guided pseudouridylation. We also describe the previously unknown structures of both Nop10 and Gar1 and the structural basis for their essential roles in pseudouridylation. By using information from related structures, we have modeled the entire ribonucleoprotein complex including both guide and substrate RNAs. We have also identified a dyskeratosis congenita mutation cluster site within a modeled dyskerin structure.  相似文献   
118.
Gamma frequencies of burst discharge (>40 Hz) have become recognized in select cortical and non-cortical regions as being important in feature extraction, neural synchrony and oscillatory discharge. Pyramidal cells of the electrosensory lateral line lobe (ELL) of Apteronotus leptorhynchus generate burst discharge in relation to specific features of sensory input in vivo that resemble those recognized as gamma frequency discharge when examined in vitro. We have shown that these bursts are generated by an entirely novel mechanism termed conditional backpropagation that involves an intermittent failure of dendritic Na+ spike conduction. Conditional backpropagation arises from a frequency-dependent broadening of dendritic spikes during repetitive discharge, and a mismatch between the refractory periods of somatic and dendritic spikes. A high threshold class of K+ channel, AptKv3.3, is expressed at high levels and distributed over the entire soma-dendritic axis of pyramidal cells. AptKv3.3 channels are shown to contribute to the repolarization of both somatic and dendritic spikes, with pharmacological blockade of dendritic Kv3 channels revealing an important role in controlling the threshold for burst discharge. The entire process of conditional back-propagation and burst output is successfully simulated using a new compartmental model of pyramidal cells that incorporates a cumulative inactivation of dendritic K+ channels during repetitive discharge. This work is important in demonstrating how the success of spike backpropagation can control the output of a principle sensory neuron, and how this process is regulated by the distribution and properties of voltage-dependent K+ channels.  相似文献   
119.
Plant growth-promoting rhizobacteria (PGPR) are common components of the rhizosphere, but their role in adaptation of plants to extreme environments is not yet understood. Here, we examined rhizobacteria associated with ancient clones of Larrea tridentata in the Mohave desert, including the 11,700-year-old King Clone, which is oldest known specimen of this species. Analysis of unculturable and culturable bacterial community by PCR-DGGE revealed taxa that have previously been described on agricultural plants. These taxa included species of Proteobacteria, Bacteroidetes, and Firmicutes that commonly carry traits associated with plant growth promotion, including genes encoding aminocyclopropane carboxylate deaminase and β–propeller phytase. The PGPR activities of three representative isolates from L. tridentata were further confirmed using cucumber plants to screen for plant growth promotion. This study provides an intriguing first view of the mutualistic bacteria that are associated with some of the world’s oldest living plants and suggests that PGPR likely contribute to the adaptation of L. tridentata and other plant species to harsh environmental conditions in desert habitats.  相似文献   
120.
Seed quality in tomato is associated with many complex physiological and genetic traits. While plant processes are frequently controlled by the action of small‐ to large‐effect genes that follow classic Mendelian inheritance, our study suggests that seed quality is primarily quantitative and genetically complex. Using a recombinant inbred line population of Solanum lycopersicum × Solanum pimpinellifolium, we identified quantitative trait loci (QTLs) influencing seed quality phenotypes under non‐stress, as well as salt, osmotic, cold, high‐temperature and oxidative stress conditions. In total, 42 seed quality traits were analysed and 120 QTLs were identified for germination traits under different conditions. Significant phenotypic correlations were observed between germination traits under optimal conditions, as well as under different stress conditions. In conclusion, one or more QTLs were identified for each trait with some of these QTLs co‐locating. Co‐location of QTLs for different traits can be an indication that a locus has pleiotropic effects on multiple traits due to a common mechanistic basis. However, several QTLs also dissected seed quality in its separate components, suggesting different physiological mechanisms and signalling pathways for different seed quality attributes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号