首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   29篇
  2023年   3篇
  2022年   6篇
  2021年   12篇
  2020年   9篇
  2019年   9篇
  2018年   22篇
  2017年   12篇
  2016年   16篇
  2015年   26篇
  2014年   27篇
  2013年   32篇
  2012年   34篇
  2011年   36篇
  2010年   22篇
  2009年   24篇
  2008年   29篇
  2007年   21篇
  2006年   27篇
  2005年   28篇
  2004年   23篇
  2003年   25篇
  2002年   23篇
  2001年   12篇
  2000年   6篇
  1999年   10篇
  1998年   4篇
  1997年   2篇
  1996年   7篇
  1995年   8篇
  1994年   3篇
  1993年   6篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   6篇
  1986年   4篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1979年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有573条查询结果,搜索用时 515 毫秒
91.
We carried out a 24-h station experiment at Lake Biwa (Japan) to measure mixing events and concurrent biological signals using a free-fall microstructure profiler (TurboMAP-L), conventional hydrographic measurement device (F-probe), and the Tracker acoustic profiling system (TAPS). A clearly defined three-layer physical system was observed. Two layers were actively mixed: the surface-mixed layer and the subsurface-mixed layer. Both winds and night-time convection create the surface-mixed layer, and vertical shear due to a counterclockwise gyre maintains turbulence in the subsurface mixing layer. A strongly stratified layer between these two mixing layers is almost turbulence free, so no material flux is expected. A local oxygen maximum layer, a local oxygen minimum layer, and layers of increased chlorophyll and zooplankton abundance are all located in this strongly stratified layer. The data show the intricate influence of physical processes on the structure of biological systems and their combined influence on biogeochemical and trophic transfers in aquatic systems.  相似文献   
92.
93.
Landscape features affect habitat connectivity and patterns of gene flow and hence influence genetic structure among populations. We studied valley oak (Quercus lobata), a threatened species of California (USA) savannas and oak woodlands, with a distribution forming a ring around the Central Valley grasslands. Our main goal was to determine the role of topography and land cover on patterns of gene flow and to test whether elevation or land cover forms stronger barriers to gene flow among valley oak populations. We sampled valley oaks in 12 populations across the range of this species, genotyped each tree at eight nuclear microsatellite loci, and created a series of resistance surfaces by assigning different resistance values to land cover type and elevation. We also estimated recent migration rates and evaluated them with regard to landscape features. There was a significant but weak relationship between Euclidian distance and genetic distance. There was no relationship between genetic distances and land cover, but a significant relationship between genetic distances and elevation resistance. We conclude that gene flow is restricted by high elevations in the northern part of the valley oak range and by high elevations and the Central Valley further south. Migration rate analysis indicated some gene flow occurring east–west but we suggest that the high connectivity in the northern Central Valley is facilitating the formation of these links. We predict that southern populations may become more differentiated in the future through genetic isolation and local adaptation taking place in the face of climate change.  相似文献   
94.
Uridine 5′-diphosphate (UDP)-glucose dehydrogenase (UGD) produces UDP-glucuronic acid from UDP-glucose as a precursor of plant cell wall polysaccharides. UDP-glucuronic acid is also a sugar donor for the glycosylation of various plant specialized metabolites. Nevertheless, the roles of UGDs in plant specialized metabolism remain poorly understood. Glycyrrhiza species (licorice), which are medicinal legumes, biosynthesize triterpenoid saponins, soyasaponins and glycyrrhizin, commonly glucuronosylated at the C-3 position of the triterpenoid scaffold. Often, several different UGD isoforms are present in plants. To gain insight into potential functional differences among UGD isoforms in triterpenoid saponin biosynthesis in relation to cell wall component biosynthesis, we identified and characterized Glycyrrhiza uralensis UGDs (GuUGDs), which were discovered to comprise five isoforms, four of which (GuUGD1–4) showed UGD activity in vitro. GuUGD1–4 had different biochemical properties, including their affinity for UDP-glucose, catalytic constant, and sensitivity to feedback inhibitors. GuUGD2 had the highest catalytic constant and highest gene expression level among the GuUGDs, suggesting that it is the major isoform contributing to the transition from UDP-glucose to UDP-glucuronic acid in planta. To evaluate the contribution of GuUGD isoforms to saponin biosynthesis, we compared the expression patterns of GuUGDs with those of saponin biosynthetic genes in methyl jasmonate (MeJA)-treated cultured stolons. GuUGD1–4 showed delayed responses to MeJA compared to those of saponin biosynthetic genes, suggesting that MeJA-responsive expression of GuUGDs compensates for the decreased UDP-glucuronic acid pool due to consumption during saponin biosynthesis.  相似文献   
95.
96.
Pompe disease (glycogen storage disease type II) is an autosomal recessive myopathic disorder arising from the deficiency of lysosomal acid α-glucosidase (GAA). Recently, we found that mutant GAA in patient fibroblasts carrying c.546G>T mutation is stabilized by treatment with proteasome inhibitor as well as pharmacological chaperon N-butyl-deoxynojirimycin. In this study, we characterized the effect of two proteasome inhibitors, bortezomib and MG132, on maturation, subcellular localization and residual activity of mutant GAA in the patient fibroblasts carrying c.546G>T mutation. Each proteasome inhibitor promoted the stabilization of patient GAA and processing of them to mature forms without cytotoxic effect. Immunocytochemical analysis showed increased colocalization of GAA with the lysosomal marker LAMP2 in patient fibroblasts treated with proteasome inhibitors. Furthermore, bortezomib and MG132 also increased enzyme activity in the patient fibroblasts (about 4-fold and 2-fold, respectively). These findings indicate that proteasome inhibitor may be a novel drug as potential pharmacological chaperone therapy for Pompe disease patient carrying chaperon-responsive mutation.  相似文献   
97.
Triterpenoids are a diverse group of secondary metabolites that are associated with a variety of biological activities. Oleanolic acid, ursolic acid and betulinic acid are common triterpenoids in plants with diverse biological activities, including antifungal, antibacterial, anti-human immunodeficiency virus (HIV) and/or antitumor activities. In the present study, using the gene co-expression analysis tool of Medicago truncatula, we found a strong correlation between CYP716A12 and β-amyrin synthase (bAS), which encodes the enzyme responsible for the initial cyclization of 2,3-oxidosqualene to β-amyrin (the basic structural backbone of most triterpenoid saponins). Through an in vitro assay, we identified CYP716A12 as a β-amyrin 28-oxidase able to modify β-amyrin to oleanolic acid (through erythrodiol and, possibly, oleanolic aldehyde). We also confirmed its activity in vivo, by expressing CYP716A12 in transgenic yeast that endogenously produce β-amyrin. In addition, CYP716A12 was evaluated for its potential α-amyrin- and lupeol-oxidizing activities. Interestingly, CYP716A12 was able to generate ursolic acid (through uvaol and, possibly, ursolic aldehyde) and betulinic acid (through betulin). Hence, CYP716A12 was characterized as a multifunctional enzyme with β-amyrin 28-oxidase, α-amyrin 28-oxidase and lupeol 28-oxidase activities. We also identified homologs of CYP716A12 in grape (CYP716A15 and CYP716A17) that are involved in triterpenoid biosynthesis, which indicates the highly conserved functionality of the CYP716A subfamily among plants. These findings will be useful in the heterologous production of pharmacologically and industrially important triterpenoids, including oleanolic acid, ursolic acid and betulinic acid.  相似文献   
98.
To determine the chromosomal location of bunching onion (Allium fistulosum L.) simple sequence repeats (SSRs) and bulb onion (A. cepa L.) expressed sequence tags (ESTs), we used a complete set of bunching onion–shallot monosomic addition lines and allotriploid bunching onion single alien deletion lines as testers. Of a total of 2,159 markers (1,198 bunching onion SSRs, 324 bulb onion EST–SSRs and 637 bulb onion EST-derived non-SSRs), chromosomal locations were identified for 406 markers in A. fistulosum and/or A. cepa. Most of the bunching onion SSRs with identified chromosomal locations showed polymorphism in bunching onion (89.5%) as well as bulb onion lines (66.1%). Using these markers, we constructed a bunching onion linkage map (1,261 cM), which consisted of 16 linkage groups with 228 markers, 106 of which were newly located. All linkage groups of this map were assigned to the eight basal Allium chromosomes. In this study, we assigned 513 markers to the eight chromosomes of A. fistulosum and A. cepa. Together with 254 markers previously located on a separate bunching onion map, we have identified chromosomal locations for 766 markers in total. These chromosome-specific markers will be useful for the intensive mapping of desirable genes or QTLs for agricultural traits, and to obtain DNA markers linked to these.  相似文献   
99.
Insects exhibit exquisite control of their flapping flight, capable of performing precise stability and steering maneuverability. Here we develop an integrated computational model to investigate flight dynamics of insect hovering based on coupling the equations of 6 degree of freedom (6DoF) motion with the Navier-Stokes (NS) equations. Unsteady aerodynamics is resolved by using a biology-inspired dynamic flight simulator that integrates models of realistic wing-body morphology and kinematics, and a NS solver. We further develop a dynamic model to solve the rigid body equations of 6DoF motion by using a 4th-order Runge-Kutta method. In this model, instantaneous forces and moments based on the NS-solutions are represented in terms of Fourier series. With this model, we perform a systematic simulation-based analysis on the passive dynamic stability of a hovering fruit fly, Drosophila melanogaster, with a specific focus on responses of state variables to six one-directional perturbation conditions during latency period. Our results reveal that the flight dynamics of fruit fly hovering does not have a straightforward dynamic stability in a conventional sense that perturbations damp out in a manner of monotonous convergence. However, it is found to exist a transient interval containing an initial converging response observed for all the six perturbation variables and a terminal instability that at least one state variable subsequently tends to diverge after several wing beat cycles. Furthermore, our results illustrate that a fruit fly does have sufficient time to apply some active mediation to sustain a steady hovering before losing body attitudes.  相似文献   
100.
Many survivors of severe disasters need psychological support, even those not suffering post-traumatic stress disorder (PTSD). The critical issue in understanding the psychological response after experiencing severe disasters is to distinguish neurological microstructural underpinnings as vulnerability factors from signs of emotional distress acquired soon after the stressful life event. We collected diffusion-tensor magnetic resonance imaging (DTI) data from a group of healthy adolescents before the Great East Japan Earthquake and re-examined the DTIs and anxiety levels of 30 non-PTSD subjects from this group 3–4 months after the earthquake using voxel-based analyses in a longitudinal DTI study before and after the earthquake. We found that the state anxiety level after the earthquake was negatively associated with fractional anisotropy (FA) in the right anterior cingulum (Cg) before the earthquake (r = −0.61, voxel level p<0.0025, cluster level p<0.05 corrected), and positively associated with increased FA changes from before to after the earthquake in the left anterior Cg (r = 0.70, voxel level p<0.0025, cluster level p<0.05 corrected) and uncinate fasciculus (Uf) (r = 0.65, voxel level p<0.0025, cluster level p<0.05 corrected). The results demonstrated that lower FA in the right anterior Cg was a vulnerability factor and increased FA in the left anterior Cg and Uf was an acquired sign of state anxiety after the earthquake. We postulate that subjects with dysfunctions in processing fear and anxiety before the disaster were likely to have higher anxiety levels requiring frequent emotional regulation after the disaster. These findings provide new evidence of psychophysiological responses at the neural network level soon after a stressful life event and might contribute to the development of effective methods to prevent PTSD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号