首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   22篇
  2024年   1篇
  2023年   5篇
  2022年   19篇
  2021年   22篇
  2020年   24篇
  2019年   30篇
  2018年   25篇
  2017年   15篇
  2016年   17篇
  2015年   12篇
  2014年   22篇
  2013年   28篇
  2012年   35篇
  2011年   22篇
  2010年   10篇
  2009年   9篇
  2008年   7篇
  2007年   5篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1992年   1篇
  1989年   1篇
  1983年   1篇
  1976年   1篇
排序方式: 共有329条查询结果,搜索用时 31 毫秒
121.
122.

Background

Aerobic granular sludge has become an attractive alternative to the conventional activated sludge due to its high settling velocity, compact structure, and higher tolerance to toxic substances and adverse conditions. Aerobic granular sludge process has been studied intensively in the treatment of municipal and industrial wastewater. However, information on leachate treatment using aerobic granular sludge is very limited.

Methods

This study investigated the treatment performance of old landfill leachate with different levels of ammonium using two aerobic sequencing batch reactors (SBR): an activated sludge SBR (ASBR) and a granular sludge SBR (GSBR). Aerobic granules were successfully developed using old leachate with low ammonium concentration (136 mg L?1 NH4 +-N).

Results

The GSBR obtained a stable chemical oxygen demand (COD) removal of 70% after 15 days of operation; while the ASBR required a start-up of at least 30 days and obtained unstable COD removal varying from 38 to 70%. Ammonium concentration was gradually increased in both reactors. Increasing influent ammonium concentration to 225 mg L?1 N, the GSBR removed 73 ± 8% of COD; while COD removal of the ASBR was 59 ± 9%. The GSBR was also more efficient than the ASBR for nitrogen removal. The granular sludge could adapt to the increasing concentrations of ammonium, achieving 95 ± 7% removal efficiency at a maximum influent concentration of 465 mg L?1 N. Ammonium removal of 96 ± 5% was obtained by the ASBR when it was fed with a maximum of 217 mg L?1 NH4 +-N. However, the ASBR was partially inhibited by free-ammonia and nitrite accumulation rate increased up to 85%. Free-nitrous acid and the low biodegradability of organic carbon were likely the main factors affecting phosphorus removal.

Conclusion

The results from this research suggested that aerobic granular sludge have advantage over activated sludge in leachate treatment.
  相似文献   
123.
CIZ1 forms large assemblies at the inactive X chromosome (Xi) in female fibroblasts in an Xist lncRNA-dependent manner and is required for accurate maintenance of polycomb targets genome-wide. Here we address requirements for assembly formation and show that CIZ1 undergoes two direct interactions with Xist, via independent N- and C-terminal domains. Interaction with Xist, assembly at Xi, and complexity of self-assemblies formed in vitro are modulated by two alternatively spliced glutamine-rich prion-like domains (PLD1 and 2). PLD2 is dispensable for accumulation at existing CIZ1–Xi assemblies in wild-type cells but is required in CIZ1-null cells where targeting, assembly, and enrichment for H3K27me3 and H2AK119ub occur de novo. In contrast, PLD1 is required for both de novo assembly and accumulation at preexisting assemblies and, in vitro, drives formation of a stable fibrillar network. Together they impart affinity for RNA and a complex relationship with repeat E of Xist. These data show that alternative splicing of two PLDs modulates CIZ1’s ability to build large RNA–protein assemblies.  相似文献   
124.
Pathogens isolated from fish appear to possess considerable antimicrobial resistance and represent a problem for the economy and public health. Natural antimicrobial substitutes to traditional antibiotics represent an essential tool in the fight against antibiotic resistance. Nanotechnology has shown considerable potential in different research fields, and the antimicrobial properties of silver nanoparticles are known. Silver has been used for medical purposes since ancient times because of its bactericidal properties, and the highly reactive surfaces of silver nanoparticles (AgNPs) indicate that they might have a function in antimicrobial applications. This work aimed to study the antimicrobial properties of biologically produced AgNPs from Origanum vulgare leaves compared to chemically produced AgNPs. Both types were characterized by UV–vis spectrophotometry, TEM, and dynamic light scattering and tested against three bacterial strains (Streptococcus agalactiae, and Aeromonas hydrophila, both isolated from Nile tilapia and Vibrio alginolyticus, isolated from sea bass) and three fungal strains (Aspergillus flavus, Fusarium moniliforme, and Candida albicans, all isolated from Nile tilapia). Disk diffusion test and evaluation of ultrastructure changes of tested microorganisms treated with AgNPs by transmission electron microscopy were performed. Moreover, the hemolytic properties of AgNPs were studied on chicken and goat red blood cells. The results obtained declare that the green biological production of silver nanoparticles is safer and more effective than the chemical one; moreover, AgNPs have interesting dose-dependent antimicrobial properties, with better results for biologically produced ones; their effectiveness against tested bacterial and fungal strains opens the way to their use to limit fish diseases, increase economy and improve human health.  相似文献   
125.
This study investigated the potential of Persian shallot extract as an anticancer agent in HepG2 tumor cell line, an in vitro human hepatoma cancer model system. The inhibitory effect of Persian shallot on the growth of HepG2 cells was measured by MTT assay. To explore the underlying mechanism of cell growth inhibition of Persian shallot, the activity of Persian shallot in inducing apoptosis was investigated through the detection of annexin V signal by flow cytometry and expression of some apoptosis related genes such p21, p53, puma, caspase-8 family-Bcl-2 proteins like bid, bim, bcl-2 and bax were measured by real-time PCR in HepG2 cells. Persian shallot extract inhibited the growth of HepG2 cells in a dose-dependent manner. The IC50 value (inhibiting cell growth by 50%) was 149 μg/ml. The results of real-time PCR revealed a significant up-regulation of bid, bim, caspase-8, puma, p53, p21 and bax genes and a significant downregulation of bcl-2 gene in HepG2 cells treated with Persian shallot extract significantly. Therefore, this is the first report on an increased expression of bid, bim, caspase-8, puma, p53, p21 and bax genes and down regulation of bcl-2 gene indicating that the Persian shallot extract possibly induced the process of cell death through the intrinsic and extrinsic apoptosis pathways and triggers the programmed cell death in HepG2 tumor cell lines by modulating the expression of pro-/anti-apoptotic genes. Furthermore, we showed that Persian shallot extract increased annexin V signal and expression, resulting in apoptotic cell death of HepG2 cells after 24 h treatment. Therefore, according to the results of this study, the Persian shallot extract could be considered as a potential candidate for production of drug for the prevention or treatment of human hepatoma.  相似文献   
126.
Expression of anti human IL-4 and IL-6 scFvs in transgenic tobacco plants   总被引:3,自引:0,他引:3  
The two murine single-chain Fv (scFv) genes against human interleukin IL-4 and IL-6 cytokines were cloned in a plant expression vector (pGEJAE1) and mobilized to Agrobacterium tumefaciens. Tobacco leaf discs were co-cultured with Agrobacterium and transferred to selective media for regeneration. The tobacco in vitro plants produced scFvs against human IL-4 and IL-6. Only 8% of transformed plants expressing anti-IL-4 scFv were obtained versus 76% of transformed plants expressing anti-IL-6 scFv. In addition, some plants producing anti-IL-4 and anti-IL-6 scFvs aged more rapidly in in vitro conditions and in greenhouse pots than did control plants. Western blot analysis showed that the transformed Nicotiana tabacum plants contained proteins with an apparent molecular mass on electrophoresis of ca. 32 kDa, corresponding to the predicted size of the scFvs. As entire plant root seemed to accumulate more scFv than did leaves, we decided to continue working with isolated roots. Anti-IL-6 scFvs were detected in cultivated roots and their culture media. Functional anti-IL-6 scFv accounted for 0.16–0.18% of total soluble proteins. The affinity of the anti-IL-6 scFv produced in plants and measured by Biacore was similar to that of scFv produced in Escherichia coli. The high levels of antibody accumulation in isolated roots and secretion into the medium demonstrate the potential for producing recombinant protein in bioreactor systems.these authors contributed equally to this workthese authors contributed equally to this work  相似文献   
127.
Wildlife crime is increasingly gaining prominence in global environmental debates. The crime, generating huge financial returns to few individuals, has far reaching implications on ecology, economy and global security. The seriousness of these implications provides sufficient rationale for reconsidering and intensifying efforts to combat this crime. However, these efforts are compromised by a number of challenges, though opportunities for success exist. This paper presents some of these challenges and opportunities available for reversing the trend of wildlife crime in Tanzania. The challenges presented include poverty, high profit associated with illicit trade on wildlife, poor governance and corruption, minimal budget and inadequate institutional support, political interference and low employee morale, minimal benefits to local communities, human population growth, climate change and HIV/AIDS pandemic. Opportunities identified include increased public awareness, growing global political concern and commitment, presence of relevant policies, programmes and strategies along with international agreements supportive to species protection. Before embarking on challenges and opportunities, the paper provides an overview of Tanzania’s wildlife resources, status and trend of this crime. In conclusion, the paper underscores the gravity of the problem and its implications and offers some recommendations for improving the situation.  相似文献   
128.
Aptamers are single stranded oligonucleotides, comparable to monoclonal antibodies (mAbs) in selectivity and affinity and have significant strategic properties in design, development and applications more than mAbs. Ease of design and development, simple chemical modification and the attachment of functional groups, easily handling and more adaptability with analytical methods, small size and adaptation with nanostructures are the valuable characteristics of aptamers in comparison to large protein based ligands. Among a broad range of targets that their specific aptamers developed, proteins and peptides have significant position according to the number of related studies performed so far. Since proteins control many of important physiological and pathological incidents in the living organisms, particularly human beings and because of the benefits of aptamers in clinical and analytical applications, aptamer related technologies in the field of proteins and peptides are under progress, exclusively. Currently, there is only one FDA approved therapeutic aptamer in the pharmaceutical market, which is specific to vascular endothelial growth factor and is prescribed for age related macular degenerative disease. Additionally, there are several aptamers in the different phases of clinical trials. Almost all of these aptamers are specific to clinically important peptide or protein targets. In addition, the application of protein specific aptamers in the design and development of targeted drug delivery systems and diagnostic biosensors is another intersting field of aptamer technology. In this review, significant efforts related to development and applications of aptamer technologies in proteins and peptides sciences were considered to emphasis on the importance of aptamers in medicinal and clinical applications.  相似文献   
129.
ObjectivesComputational modeling of biological systems is a powerful tool to clarify diverse processes contributing to cancer. The aim is to clarify the complex biochemical and mechanical interactions between cells, the relevance of intracellular signaling pathways in tumor progression and related events to the cancer treatments, which are largely ignored in previous studies.Materials and MethodsA three‐dimensional multiscale cell‐based model is developed, covering multiple time and spatial scales, including intracellular, cellular, and extracellular processes. The model generates a realistic representation of the processes involved from an implementation of the signaling transduction network.ResultsConsidering a benign tumor development, results are in good agreement with the experimental ones, which identify three different phases in tumor growth. Simulating tumor vascular growth, results predict a highly vascularized tumor morphology in a lobulated form, a consequence of cells'' motile behavior. A novel systematic study of chemotherapy intervention, in combination with targeted therapy, is presented to address the capability of the model to evaluate typical clinical protocols. The model also performs a dose comparison study in order to optimize treatment efficacy and surveys the effect of chemotherapy initiation delays and different regimens.ConclusionsResults not only provide detailed insights into tumor progression, but also support suggestions for clinical implementation. This is a major step toward the goal of predicting the effects of not only traditional chemotherapy but also tumor‐targeted therapies.  相似文献   
130.
Differentiation of mesenchymal stem cells (MSCs) to hepatocytes‐like cells is associated with alteration in the level of reactive oxygen species (ROS) and antioxidant defense system. Here, we report the role of glutathione in the functions of hepatocytes derived from MSCs. The stem cells undergoing differentiation were treated with glutathione modifiers [buthionine sulfoxide (BSO) or N‐acetyl cysteine (NAC)], and hepatocytes were collected on day 14 of differentiation and analysed for their biological and metabolic functions. Differentiation process has been performed in presence of glutathione modifiers viz. BSO and NAC. Depending on the level of cellular glutathione, the proliferation rate of MSCs was affected. Glutathione depletion by BSO resulted in increased levels of albumin and ROS in hepatocytes. Whereas, albumin and ROS were inhibited in cells treated with glutathione precursor (NAC). The metabolic function of hepatocytes was elevated in BSO‐treated cells as judged by increased urea, transferrin, albumin, alanine transaminase and aspartate transaminase secretions in the media. However, the metabolic activity of the hepatocytes was inhibited when glutathione was increased by NAC. We conclude that the efficiency of metabolic function of hepatocytes is inversely related to the levels of cellular glutathione. These data may suggest a novel role of glutathione in regulation of metabolic function of hepatocytes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号