首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   527篇
  免费   26篇
  国内免费   2篇
  2024年   1篇
  2023年   5篇
  2022年   14篇
  2021年   34篇
  2020年   14篇
  2019年   8篇
  2018年   20篇
  2017年   14篇
  2016年   29篇
  2015年   36篇
  2014年   27篇
  2013年   67篇
  2012年   43篇
  2011年   38篇
  2010年   21篇
  2009年   18篇
  2008年   28篇
  2007年   17篇
  2006年   22篇
  2005年   26篇
  2004年   18篇
  2003年   12篇
  2002年   16篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1957年   1篇
排序方式: 共有555条查询结果,搜索用时 15 毫秒
11.
Exome sequencing coupled with homozygosity mapping was used to identify a transition mutation (c.794T>C; p.Leu265Ser) in ELMOD3 at the DFNB88 locus that is associated with nonsyndromic deafness in a large Pakistani family, PKDF468. The affected individuals of this family exhibited pre-lingual, severe-to-profound degrees of mixed hearing loss. ELMOD3 belongs to the engulfment and cell motility (ELMO) family, which consists of six paralogs in mammals. Several members of the ELMO family have been shown to regulate a subset of GTPases within the Ras superfamily. However, ELMOD3 is a largely uncharacterized protein that has no previously known biochemical activities. We found that in rodents, within the sensory epithelia of the inner ear, ELMOD3 appears most pronounced in the stereocilia of cochlear hair cells. Fluorescently tagged ELMOD3 co-localized with the actin cytoskeleton in MDCK cells and actin-based microvilli of LLC-PK1-CL4 epithelial cells. The p.Leu265Ser mutation in the ELMO domain impaired each of these activities. Super-resolution imaging revealed instances of close association of ELMOD3 with actin at the plasma membrane of MDCK cells. Furthermore, recombinant human GST-ELMOD3 exhibited GTPase activating protein (GAP) activity against the Arl2 GTPase, which was completely abolished by the p.Leu265Ser mutation. Collectively, our data provide the first insights into the expression and biochemical properties of ELMOD3 and highlight its functional links to sound perception and actin cytoskeleton.  相似文献   
12.
As a second messenger, Ca2+ plays a major role in cold induced transduction via stimulus-specific increases in [Ca2+]cyt, which is called calcium signature. During this process, CAXs (Ca2+/H+ exchangers) play critical role. For the first time, a putative Ca2+/H+ exchanger GhCAX3 gene from upland cotton (Gossypium hirsutum cv. ‘YZ-1′) was isolated and characterized. It was highly expressed in all tissues of cotton except roots and fibers. This gene may act as a regulator in cotton’s response to abiotic stresses as it could be up-regulated by Ca2+, NaCl, ABA and cold stress. Similar to other CAXs, it was proved that GhCAX3 also had Ca2+ transport activity and the N-terminal regulatory region (NRR) through yeast complementation assay. Over-expression of GhCAX3 in tobacco showed less sensitivity to ABA during seed germination and seedling stages, and the phenotypic difference between wild type (WT) and transgenic plants was more significant when the NRR was truncated. Furthermore, GhCAX3 conferred cold tolerance in yeast as well as in tobacco seedlings based on physiological and molecular studies. However, transgenic plant seeds showed more sensitivity to cold stress compared to WT during seed germination, especially when expressed in N-terminal truncated version. Finally, the extent of sensitivity in transgenic lines was more severe than that in WT line under sodium tungstate treatment (an ABA repressor), indicating that ABA could alleviate cold sensitivity of GhCAX3 seeds, especially in short of its NRR. Meanwhile, we also found that overexpression of GhCAX3 could enhance some cold and ABA responsive marker genes. Taken together, these results suggested that GhCAX3 plays important roles in the cross-talk of ABA and cold signal transduction, and compared to full-length of GhCAX3, the absence of NRR could enhance the tolerance or sensitivity to cold stress, depending on seedling’s developmental stages.  相似文献   
13.
Meta-analysis was performed for three major foliar diseases with the aim to find out the total number of QTL responsible for these diseases and depict some real QTL for molecular breeding and marker assisted selection (MAS) in maize. Furthermore, we confirmed our results with some major known disease resistance genes and most well-known gene family of nucleotide binding site (NBS) encoding genes. Our analysis revealed that disease resistance QTL were randomly distributed in maize genome, but were clustered at different regions of the chromosomes. Totally 389 QTL were observed for these three major diseases in diverse maize germplasm, out of which 63 QTL were controlling more than one disease revealing the presence of multiple disease resistance (MDR). 44 real-QTLs were observed based on 4 QTL as standard in a specific region of genome. We also confirmed the Ht1 and Ht2 genes within the region of real QTL and 14 NBS-encoding genes. On chromosome 8 two NBS genes in one QTL were observed and on chromosome 3, several cluster and maximum MDR QTL were observed indicating that the apparent clustering could be due to genes exhibiting pleiotropic effect. Significant relationship was observed between the number of disease QTL and total genes per chromosome based on the reference genome B73. Therefore, we concluded that disease resistance genes are abundant in maize genome and these results can unleash the phenomenon of MDR. Furthermore, these results could be very handy to focus on hot spot on different chromosome for fine mapping of disease resistance genes and MAS.  相似文献   
14.
Molecular and Cellular Biochemistry - Atherosclerosis is associated with deregulated cholesterol metabolism and formation of macrophage foam cells. CCAAT/enhancer-binding protein beta (C/EBPβ)...  相似文献   
15.
Mughees  Mohd  Chugh  Himanshu  Wajid  Saima 《Protoplasma》2020,257(2):345-352
Protoplasma - Vesicular trafficking between endoplasmic reticulum and Golgi plays a major role in the growth and proliferation of breast cancer cells. Various proteins regulate this ER-Golgi...  相似文献   
16.
Plant Cell, Tissue and Organ Culture (PCTOC) - Melittin peptide is the main component of honey bee venom with the cytotoxic and anti-cancer effect which can affect healthy and cancerous cells...  相似文献   
17.
Haider  Saida  Sajid  Irfan  Batool  Zehra  Madiha  Syeda  Sadir  Sadia  Kamil  Noor  Liaquat  Laraib  Ahmad  Saara  Tabassum  Saiqa  Khaliq  Saima 《Neurochemical research》2020,45(11):2762-2774

Noise has always been an important environmental factor that induces health problems in the general population. Due to ever increasing noise pollution, humans are facing multiple auditory and non-auditory problems including neuropsychiatric disorders. In modern day life it is impossible to avoid noise due to the rapid industrialization of society. Continuous exposure to noise stress creates a disturbance in brain function which may lead to memory disorder. Therefore, it is necessary to find preventive measures to reduce the deleterious effects of noise exposure. Supplementation of taurine, a semi essential amino acid, is reported to alleviate psychiatric disorders. In this study noise-exposed (100 db; 3 h daily for 15 days) rats were supplemented with taurine at a dose of 100 mg/kg for 15 days. Spatial and recognition memory was assessed using the Morris water maze and novel object recognition task, respectively. Results of this study showed a reversal of noise-induced memory impairment in rats. The derangements of catecholaminergic and serotonergic levels in the hippocampus and altered brain antioxidant enzyme activity due to noise exposure were also restored by taurine administration. This study highlights the importance of taurine supplementation to mitigate noise-induced impaired memory via normalizing the neurochemical functions and reducing oxidative stress in rat brain.

  相似文献   
18.
Abstract

Acinetobacter baumannii is a biofilm forming multidrug resistant (MDR) pathogen responsible for respiratory tract infections. In this study, aluminium oxide nanoparticles (Al2O3 NPs) were synthesized and characterized by TEM and EDX and shown to be spherical shaped nanoparticles with a diameter < 10?nm. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) for the Al2O3 NPs ranged between 125 and 1,000?µg ml?1. Exposure to NPs caused cellular membrane disruption, indicated by an increase in cellular leakage of the contents. Biofilm inhibition was 11.64 to 70.2%, whereas attachment of bacteria to polystyrene surfaces was reduced to 48.8 to 51.9% in the presence of NPs. Nanoparticles also reduced extracellular polymeric substance production and the biomass of established biofilms. The data revealed the non-toxic nature of Al2O3 NPs up to a concentrations of 120?µg ml?1 in HeLa cell lines. These results demonstrate an effective and safer use of Al2O3 NPs against the MDR A. baumannii by targeting biofilm formation, adhesion and EPS production.  相似文献   
19.
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing, derived from prokaryotic immunity system, is rapidly emerging as an alternative platform for introducing targeted alterations in genomes. The CRISPR-based tools have been deployed for several other applications including gene expression studies, detection of mutation patterns in genomes, epigenetic regulation, chromatin imaging, etc. Unlike the traditional genetic engineering approaches, it is simple, cost-effective, and highly specific in inducing genetic variations. Despite its popularity, the technology has limitations such as off-targets, low mutagenesis efficiency, and its dependency on in-vitro regeneration protocols for the recovery of stable plant lines. Several other issues such as persisted CRISPR activity in subsequent generations, the potential for transferring to its wild type population, the risk of reversion of edited version to its original phenotype particularly in cross-pollinated plant species when released into the environment and the scarcity of validated targets have been overlooked. This article briefly highlights these undermined aspects, which may challenge the wider applications of this platform for improving crop genetics.  相似文献   
20.
Temporins are a family of short antimicrobial peptides (8–17 residues) that mostly show potent activity against Gram-positive bacteria. Herein, we demonstrate that temporin-SHd, a 17-residue peptide with a net charge of +2 (FLPAALAGIGGILGKLFamide), expressed a broad spectrum of antimicrobial activity. This peptide displayed potent antibacterial activities against Gram-negative and Gram-positive bacteria, including multi-drug resistant Staphylococcus aureus strains, as well as antiparasitic activity against promastigote and the intracellular stage (amastigote) of Leishmania infantum, at concentration not toxic for the macrophages. Temporin-SHd that is structured in a non-amphipathic α-helix in anionic membrane-mimetic environments, strongly and selectively perturbs anionic bilayer membranes by interacting with the polar head groups and acyl region of the phospholipids, with formation of regions of two coexisting phases: one phase rich in peptide and the other lipid-rich. The disruption of lipid packing within the bilayer may lead to the formation of transient pores and membrane permeation/disruption once a threshold peptide accumulation is reached. To our knowledge, Temporin-SHd represents the first known 17-residue long temporin expressing such broad spectrum of antimicrobial activity including members of the trypanosomatidae family. Additionally, since only a few shorter members (13 residues) of the temporin family are known to display antileishmanial activity (temporins-TA, -TB and -SHa), SHd is an interesting tool to analyze the antiparasitic mechanism of action of temporins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号