首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   18篇
  国内免费   3篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   7篇
  2014年   9篇
  2013年   7篇
  2012年   9篇
  2011年   14篇
  2010年   7篇
  2009年   5篇
  2008年   9篇
  2007年   6篇
  2006年   9篇
  2005年   17篇
  2004年   18篇
  2003年   5篇
  2002年   10篇
  2001年   4篇
  2000年   11篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1974年   2篇
  1971年   1篇
  1970年   2篇
  1967年   1篇
  1966年   1篇
  1928年   1篇
排序方式: 共有236条查询结果,搜索用时 31 毫秒
31.
中国脊髓灰质炎Ⅱ型疫苗相关分离株病毒性状的观察   总被引:8,自引:1,他引:7  
侯晓辉  张礼璧 《病毒学报》1997,13(4):332-338
对1994年中国分离的13株脊髓灰质炎Ⅱ型疫苗相关株进行了PCR-RFLP分析,发现7株为重组病毒,毒力较疫苗株有回复,在Ⅱ型脊髓灰质炎病毒基因序列上,对于神经毒力有重要影响的第481位核苷酸发生突变,另一个被视为重要位点的2908位核苷酸无一发生变化,反而在2909位核苷发生了高频率的点突变,意味着2909位点在中国Ⅱ型疫苗相关株的自然变异中可能起着重要作用。  相似文献   
32.
To determine a possible mechanism causing male and female sterility in Cryptomeria japonica male and female cones were collected from a C. japonica, tree, ShinDai2, that lacks pollen release and fertile seeds and specimens were processed to examine the development of pollen and female gametophytes using light microscopy and field emission scanning electron microscopy. Pre-meiotic development proceeded normally, but the formation of aberrant meiotic products was observed in cones of both sexes. In sterile microsporangia, heterogeneous microspore populations ranging from monads to polyads gave rise to mature pollen grains of non-uniform size. These pollen grains were covered with an amorphous layer and adhered to each other. In addition, they remained in the microsporangia and were not released even after the onset of pollen dissemination from fertile trees. In the ovules of sterile female cones, megaspores with abnormal shapes, numbers, and sizes formed, and the development of female gametophytes was arrested at the free nuclear or archegonium formation stages. These gametophytes collapsed, and no fertile embryo was generated. Results indicate that meiotic defects are important in the sterility mechanism.  相似文献   
33.
We investigate operating system noise, which we identify as one of the main reasons for a lack of synchronicity in parallel applications. Using a microbenchmark, we measure the noise on several contemporary platforms and find that, even with a general-purpose operating system, noise can be limited if certain precautions are taken. We then inject artificially generated noise into a massively parallel system and measure its influence on the performance of collective operations. Our experiments indicate that on extreme-scale platforms, the performance is correlated with the largest interruption to the application, even if the probability of such an interruption on a single process is extremely small. We demonstrate that synchronizing the noise can significantly reduce its negative influence.
Aroon NatarajEmail:
  相似文献   
34.
SARS‐CoV has four major structural proteins: the N, S, M, and E proteins. To investigate the mechanism of SARS‐CoV assembly, we cloned the genes encoding these four proteins into the eukaryotic expression vector pCAGGS and transfected them into 293T cells. When all four expression vectors were co‐transfected VLP formed, as confirmed using electron microscopy. Using a rabbit polyclonal antibody specific to the N protein, N‐protein‐containing particles similar in size to the VLP were also observed by immunoelectron microscopy, indicating that the VLP contained the N protein. Co‐immunoprecipitation analyses demonstrated an interaction between the N and M proteins, suggesting that N protein binds directly to M protein to be incorporated into VLP.  相似文献   
35.
NTH201, a novel class II KNOTTED1-like protein gene, was cloned from tobacco (Nicotiana tabacum cv. Xanthi) and its role in Tobacco mosaic virus (TMV) infection was analyzed. Virus-induced gene silencing of NTH201 caused a delay in viral RNA accumulation as well as virus spread in infected tobacco plants. Overexpression of the gene in a transgenic tobacco plant (N. tabacum cv. Xanthi nc) infected by TMV showed larger local lesions than those of the nontransgenic plant. NTH201 exhibited no intercellular trafficking ability but did exhibit colocalization with movement protein (MP) at the plasmodesmata. When NTH201-overexpressing tobacco BY-2 cultured cells were infected with TMV, the accumulation of MP but not of viral genomic and subgenomic RNA clearly was accelerated compared with those in nontransgenic cells at an early infection period. The formation of virus replication complexes (VRC) also was accelerated in these transgenic cells. Conversely, NTH201-silenced cells showed less MP accumulations and fewer VRC formations than did nontransgenic cells. These results suggested that NTH201 might indirectly facilitate MP accumulation and VRC formation in TMV-infected cells, leading to rapid viral cell-to-cell movement in plants at an early infection stage.  相似文献   
36.
A total of 905 enterohemorrhagic Escherichia coli (EHEC) O157:H7 isolates that were recovered from experimentally infected cattle, in addition to the inoculated strain, were analyzed by pulsed-field gel electrophoresis (PFGE). Twelve PFGE profiles other than that of the inoculated strain were observed. We successfully identified five distinct chromosomal deletions that affected the PFGE profiles using whole-genome PCR scanning and DNA sequencing analysis. The changes in PFGE profiles of EHEC O157:H7 isolates after passage through the intestinal tract of cattle were partially generated by deletion of chromosomal regions.Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic colitis and hemolytic-uremic syndrome in humans worldwide (18). Cattle are considered the primary reservoir for this pathogen and play a central role in transmission to humans (6). Healthy cattle transiently carry EHEC O157:H7 and shed the bacteria in their feces (5, 7). Human infections have been associated with the consumption of contaminated meat and milk, direct contact with cattle, and the consumption of vegetables, fruits, and water contaminated with cattle manure (6).Because of its high discriminatory power, pulsed-field gel electrophoresis (PFGE) has been widely employed as a molecular typing method in many epidemiological investigations to identify various outbreaks and routes of transmission of EHEC O157:H7 (1, 12, 15, 17). Simpson''s index of diversity (9) was reported to be >0.985 in previous studies (1, 15), supporting the identification of richness (the number of types among isolates) and evenness (the relative distribution of individual strains among the different types) of molecular typing using PFGE.Instability of the PFGE patterns of EHEC O157:H7 isolates has been reported. Changes in PFGE patterns were observed among strains after repeated subculturing and prolonged storage at room temperature (11). Loss of Shiga toxin genes and a large-scale inversion within the genome were identified as genetic events generating changes in PFGE patterns in vitro (10, 13). Shifts in the genotypes of EHEC O157:H7 clinical isolates from patients and cattle have been reported (3, 14). This phenomenon was also observed in EHEC O157:H7 experimental infections of cattle. Spontaneous curing of a 90-kb plasmid resulted in the loss of two restricted fragments from the PFGE profiles of EHEC O157:H7 isolates obtained from experimentally infected cattle (2). The purpose of the present study was to identify the genetic events affecting the PFGE patterns of EHEC O157:H7 after passage through the intestinal tract of cattle, especially for restriction fragments that are >90 kb long.Four 5-month-old Holstein steers were housed individually in climate-controlled biosafety level 2 containment barns in accordance with the guidelines for animal experimentation defined by the National Institute of Animal Health of Japan. The pens had individual floor drains and were cleaned twice daily with water and disinfectant. All animals were healthy and culture negative for EHEC O157:H7 strains, as determined by a previously described technique (2), prior to inoculation.EHEC O157:H7 strain Sakai-215 (12, 23), which was isolated from an outbreak in Sakai, Osaka Prefecture, in 1996 was used for inoculation. This strain harbors the genes encoding Stx1 and Stx2. A spontaneous resistant strain was selected with nalidixic acid in order to facilitate the recovery of this strain from fecal samples. All calves were inoculated using a stomach tube with an exponential-phase culture (109 CFU) of the nalidixic acid-resistant Sakai-215 strain. Fecal samples were collected from the four calves daily for 45 days. Fecal culturing was performed as described previously (2). Eight non-sorbitol-fermenting colonies were selected daily from each animal and identified as EHEC O157:H7 colonies by routine diagnostic methods (25).All animals were clinically normal throughout the experimental period. The EHEC O157:H7-inoculated calves (calves 1 to 4) were culture positive for the organism 24 h after inoculation. Intermittent fecal shedding by the calves was observed until 27, 32, 26, and 39 days postinoculation for calves 1, 2, 3, and 4, respectively (Fig. (Fig.1).1). The numbers of EHEC O157:H7 isolates recovered from calves 1, 2, 3, and 4 were 200, 224, 200, and 281, respectively.Open in a separate windowFIG. 1.Changes in PFGE profiles of EHEC O157:H7 isolates recovered from calves 1 (A), 2 (B), 3 (C), and 4 (D). The absence of a bar indicates that no EHEC O157:H7 was detected. The open horizontal bars under the vertical bars indicate that the eight isolates obtained on a day were obtained from the enrichment culture.A total of 905 recovered isolates in addition to the inoculated strain were used for PFGE analysis. Genomic DNA from each EHEC O157:H7 isolate was prepared using the method of Persing (Mayo Clinic, Rochester, MN) described by Rice et al. (20). Agarose-embedded chromosomal DNA was cleaved with XbaI by following the manufacturer''s instructions. PFGE was performed in a 0.85% megabase agarose gel, using a CHEF DR III apparatus (Bio-Rad Laboratories). The pulse time was increased from 12 to 35 s for 18 h. The PFGE profiles of all of the EHEC O157:H7 isolates recovered from the four calves were compared with that of the inoculated strain. The number of band differences was determined by enumerating the loss and addition of fragments (22).Two hundred eighty-nine isolates had PFGE profiles different from that of the inoculated strain, and 12 distinct PFGE profiles were identified for these isolates (Table (Table1).1). The fact that only one to three band differences were observed for the 12 profiles suggested that these isolates were closely related (22) and were variants of the inoculated strain. In addition, the pens had individual floor drains and were cleaned twice daily with water and disinfectant, which reduced the likelihood of introduction of novel EHEC O157:H7 strains. We designated the PFGE profiles A to L. PFGE profiles A, C, and H were obtained for all four calves and accounted for 30.4% of the 905 isolates recovered. Different PFGE profiles were obtained for all animals at least 2 days postinoculation (Fig. (Fig.1).1). All eight isolates from calf 2 collected on day 15 postinoculation and from calf 3 collected on days 22 and 23 postinoculation had PFGE profiles different from that of the original isolate (Fig. (Fig.1).1). The isolates that had the same PFGE profile as the inoculated strain were detected again later.

TABLE 1.

Temporal distribution of PFGE profiles of EHEC O157:H7 isolates recovered from experimentally infected cattle
PFGE profileNo. of isolates recovered at different times postinoculation from:
Total no. of isolates (%)
Calf 1
Calf 2
Calf 3
Calf 4
1 to 10 days11 to 20 days21 to 27 days1 to 10 days11 to 20 days21 to 30 days31 to 32 days1 to 10 days11 to 20 days21 to 36 days1 to 10 days11 to 20 days21 to 30 days31 to 39 days
Ina63562562465066046559454746616 (68.1)
A1119101372121324410191612181 (20.0)
B11 (0.1)
C132471362776572 (8.0)
D11 (0.1)
E11 (0.1)
F123 (0.3)
G11 (0.1)
H1314133221122 (2.4)
I1113 (0.3)
J11 (0.1)
K112 (0.2)
L11 (0.1)
Total no. of variants (%)b17 (21.3)24 (30.0)15 (37.5)18 (22.5)18 (25.0)22 (30.6)2 (25.0)20 (25.0)34 (42.5)35 (87.5)21 (26.3)27 (37.5)17 (26.6)19 (29.2)289 (31.9)
Open in a separate windowaPFGE profile of inoculated strain Sakai-215.bTotal numbers of isolates having PFGE profiles A to L.Kudva et al. (16) demonstrated that the difference in PFGE profiles between EHEC O157:H7 strains was due to distinct insertions or deletions that contained XbaI sites rather than to single-nucleotide polymorphisms in the XbaI sites themselves. To identify the locations of insertions or deletions in the genome of the EHEC O157:H7 isolates recovered from experimentally infected cattle, whole-genome PCR scanning (WGP scanning) was performed as described previously (19). Briefly, 549 pairs of PCR primers were used to amplify 549 segments covering the whole chromosome of EHEC O157:H7 strain RIMD 0509952, with overlaps of a certain length at every segment end. The inoculated strain (strain Sakai-215) and the strain whose genome was sequenced (RIMD 0509952) were isolated from the same outbreak in Japan in 1996 (23) and had same PFGE profile after XbaI digestion. All primer sequences are available at http://genome.gen-info.osaka-u.ac.jp/bacteria/o157/pcrscan.html. PCR were performed using genomic DNA as the template and long accurate PCR (LA-PCR) kits. The cycling conditions for the LA-PCR included an initial incubation at 96°C for 100 s, followed by 30 cycles of 96°C for 20 s and 69°C for 10 min.Prior to the WGP scanning of the isolates, we scanned an approximately 1.2-Mb region covered by 116 segments (71/72 to 146/147) of the EHEC O157:H7 genome using 24 strains, including inoculated strain Sakai-215, 4 isolates with the same PFGE profile as the inoculated strain, 3 isolates with PFGE profile A, 3 isolates with PFGE profile C, 2 isolates with PFGE profile F, 2 isolates with PFGE profile H, 2 isolates with PFGE profile I, and one isolate each with PFGE profiles B, D, E, G, J, K, and L. The main purpose of this preliminary scanning was to determine the extent of variation in the data for isolates having the same PFGE profiles.As shown in Fig. Fig.2,2, we successfully amplified products that were the expected sizes for 103 of the 116 segments for the 24 strains tested. No amplification in a segment was observed for the 24 strains. Polymorphism (expected amplification was observed in some but not all strains) was observed in 12 segments. Eleven of the 12 polymorphic segments consisted of two different sequentially unamplified regions. An IS629 insertion was also observed in a polymorphic segment in one strain. In other words, variation in the data for isolates with the same PFGE profile was not observed except for the isolates having the same PFGE profile as the inoculated strain. Hence, we performed WGP scanning using one isolate with each of the selected PFGE profiles.Open in a separate windowFIG. 2.Summary of the results of PCR scanning analysis of part of the EHEC O157:H7 genome using 24 strains recovered from experimentally infected cattle. The line at the top indicates data for the inoculated strain. The positions of Sp5 and Sp6 are indicated above the data lines. Segments showing polymorphism (expected amplification was observed in some strains but not in all strains) are indicated below the data lines. In, inoculated strain.The results of WGP scanning of the seven isolates with different PFGE profiles in addition to inoculated strain Sakai-215 are summarized in Fig. Fig.3.3. We successfully amplified products of the expected sizes for 530 of 549 segments for the eight strains tested. No amplification was observed for any of the eight strains for three segments (133.2/133.3, 164.4/164.5, and 164.5/164.6). Polymorphism was observed in 16 segments. Fourteen of the 16 polymorphic segments were located in four different regions.Open in a separate windowFIG. 3.Summary of the results of WGP scanning analysis of the EHEC O157:H7 isolates recovered from experimentally infected cattle and the inoculated strain. The positions of Sp5 and Sp13 are indicated above the data lines. Segments showing polymorphism (expected amplification was observed in some strains but not in all strains) are indicated below the data lines. In, inoculated strain.The 110/110.1-to-110.5/111 region in PFGE profile I, the 122/122.1-to-122.4/123 region in PFGE profile K, and the 199/199.1-to-199.2/200 region in PFGE profiles B, C, and G corresponded to prophages Sp5, Sp6, and Sp13, respectively. The 283/284-to-285/286 region in PFGE profile E and the 448/448.1-to-448.1/448.2 region in PFGE profile B corresponded to nonprophage regions on the chromosome. The sizes of the deletion sites of nonprophage regions 283/284 to 285/286 and 448/448.1 to 448.1/448.2 were 17 kb and 9.5 kb, respectively. We synthesized new primer pairs upstream and downstream of these five regions and performed LA-PCR (data not shown). The results of the sequencing analysis of the products indicated that the three prophage genomes were cured at their integration sites (Fig. 4A to C). It is not clear from this study whether deletion of the three prophages represented phage excisions or simple deletions. We identified short direct CCGCCA and GC repeats at both ends of the 17-kb and 9.5-kb deletion sites, respectively, compared with the sequence data for the Sakai-215 strain, although the deleted regions included one side of the direct repeats (Fig. 5D and E).Open in a separate windowFIG. 4.Schematic diagrams showing the relationships between deletions of chromosomal regions and changes in the sizes of restricted fragments. (A) The 467-kb restricted fragment of PFGE profile I was generated by deletion of prophage Sp5 located in the 530-kb fragments of the inoculated strain. (B) The 759-kb restricted fragment of PFGE profile K was generated by deletion of Sp6 located in the adjacent 530-kb and 278-kb fragments of the inoculated strain. (C) The 291-kb restricted fragment of PFGE profiles C, G, and H was generated by deletion of prophage Sp13 located in the adjacent 255-kb and 55-kb fragments of the inoculated strain. (D) The 188-kb restricted fragment of PFGE profile E was generated by deletion of the 17-kb chromosomal region in the 205-kb fragment of the inoculated strain. (E) The 334-kb restricted fragment of PFGE profile B was generated by deletion of the 9.5-kb region located in the adjacent 343-kb and 6.2-kb fragments of the inoculated strain.Open in a separate windowFIG. 5.Comparison of the PFGE profiles of the EHEC O157:H7 isolates recovered from experimentally infected cattle and the inoculated strain. Lane M, λ ladder used as a size marker; lane 1, inoculated strain; lanes 2 to 13, isolates with PFGE profiles A to L, respectively.The deleted 17-kb region contains 16 open reading frames, including formate hydrogenase-related genes (4), mutS (21), and rpoS (8), suggesting that the strain with PFGE profile E is more susceptible to environmental stresses than the inoculated strain. In fact, the isolate with PFGE profile E was more susceptible to low-pH, high-temperature, and high-osmolarity conditions or to the presence of deoxycholate in vitro than the other isolates obtained in this study (data not shown). The fact that this isolate was obtained 4 days after inoculation from calf 1 and could not be detected after that time suggested that the isolate with PFGE profile E could not survive in the intestine of the calf due to the loss of genes related to stress resistance. The deleted 9.5-kb region contains nine open reading frames whose functions are unknown. The strain with this deletion was isolated 1 day after inoculation from calf 3 and could not be detected after that time.Sp5 is one of the prophages in EHEC O157:H7 RIMD 0509952 carrying the stx2 gene. Deletion of this prophage affected the PFGE profile of inoculated strain Sakai-215. The loss of a 530-kb fragment and the gain of a 467-kb fragment due to deletion of the 63-kb prophage Sp5 were identified in PFGE profile I (Fig. (Fig.4A4A and and55).Sp6 is one of the lambda-like phages and has a single XbaI site in its genome. The loss of 530-kb and 278-kb fragments and the gain of a 759-kb fragment due to deletion of this phage were identified in PFGE profile K (Fig. (Fig.4B4B and and55).Sp13 is one of the P2-like phages that have a single XbaI site in the genome. The loss of 255-kb and 55-kb fragments and the gain of a 291-kb fragment due to deletion of this prophage were identified in PFGE profiles C, G, and H (Fig. (Fig.4C4C and and5).5). The same changes in PFGE profile B were not observed, although we found a sequentially unamplified region in which Sp13 was located in the genomes of isolates with PFGE profile B (Fig. (Fig.3).3). We detected part of the Sp13 sequence by Southern blot analysis; however, this part of the sequence was not detected in isolates with PFGE profiles C, G, and H (data not shown). One possible explanation for this phenomenon is that deletion of part of the Sp13 sequence included deletion of primer annealing sites. However, the details of mutation in this region for the isolates with PFGE profile B are not clear.Deletion of the two nonprophage regions also affected the PFGE profiles. The loss of a 205-kb fragment and the gain of a 188-kb fragment due to deletion of a 17-kb region were identified in PFGE profile E (Fig. (Fig.4D4D and and5).5). The loss of a 343-kb fragment and the gain of a 334-kb fragment due to deletion of a 9.5-kb region were identified in PFGE profile B (Fig. (Fig.4E4E and and55).Two single unamplified segments were both observed in the strain with PFGE profile F (106.3/106.4 and 204.2/204.3). We could not amplify these regions using additional primer pairs (data not shown). Insertion of DNA or large-scale inversion might have occurred in these regions. The other unamplified segments all corresponded to deletion of chromosomal regions. Recombination successfully occurred and cured three prophages and two other chromosomal regions. These data suggest that the changes in PFGE profiles after passage through the intestinal tract of cattle are generated in part by deletion of chromosomal regions. Obviously, deletion of five chromosomal regions does not explain the other changes in the PFGE profiles, including profiles A, D, F, J, and L. The genetic events behind such changes are not clear.Prior to drawing a conclusion, we need to consider the use of nalidixic acid, a potent inducer of bacteriophage induction (24), for selection of the isolates. In addition, most of the EHEC O157:H7 isolates obtained on day 8 postinoculation and later were isolated from enrichment cultures (Fig. (Fig.1).1). The possibility that the culturing process itself affected the deletion events affecting the PFGE profiles cannot be ruled out. Taken together, the results suggest that deletions can cause a single strain to mutate into several variants while it is passing through the gastrointestinal tract of a host, provided that the culture technique used does not contribute to this process. Hence, this study may explain why EHEC O157:H7 isolates with various PFGE profiles can be isolated from a single animal. What causes the deletion mutations and why the PFGE profiles show such patterns after passage through cattle are subjects for future studies.  相似文献   
37.
Since 1960, magnetic fields have been discussed as Zeitgebers for circadian clocks, but the mechanism by which clocks perceive and process magnetic information has remained unknown. Recently, the radical-pair model involving light-activated photoreceptors as magnetic field sensors has gained considerable support, and the blue-light photoreceptor cryptochrome (CRY) has been proposed as a suitable molecule to mediate such magnetosensitivity. Since CRY is expressed in the circadian clock neurons and acts as a critical photoreceptor of Drosophila's clock, we aimed to test the role of CRY in magnetosensitivity of the circadian clock. In response to light, CRY causes slowing of the clock, ultimately leading to arrhythmic behavior. We expected that in the presence of applied magnetic fields, the impact of CRY on clock rhythmicity should be altered. Furthermore, according to the radical-pair hypothesis this response should be dependent on wavelength and on the field strength applied. We tested the effect of applied static magnetic fields on the circadian clock and found that flies exposed to these fields indeed showed enhanced slowing of clock rhythms. This effect was maximal at 300 μT, and reduced at both higher and lower field strengths. Clock response to magnetic fields was present in blue light, but absent under red-light illumination, which does not activate CRY. Furthermore, cryb and cryOUT mutants did not show any response, and flies overexpressing CRY in the clock neurons exhibited an enhanced response to the field. We conclude that Drosophila's circadian clock is sensitive to magnetic fields and that this sensitivity depends on light activation of CRY and on the applied field strength, consistent with the radical pair mechanism. CRY is widespread throughout biological systems and has been suggested as receptor for magnetic compass orientation in migratory birds. The present data establish the circadian clock of Drosophila as a model system for CRY-dependent magnetic sensitivity. Furthermore, given that CRY occurs in multiple tissues of Drosophila, including those potentially implicated in fly orientation, future studies may yield insights that could be applicable to the magnetic compass of migratory birds and even to potential magnetic field effects in humans.  相似文献   
38.
Atg5-null mice are neonatal lethal. We have revealed in our recent paper that these mice die due to neuronal dysfunction resulting in suckling failure. Our new mouse model, atg5–/–;Eno2/Nse-Atg5 mice, where Atg5 is deficient in the whole body except for neurons, enables us to analyze the consequences of macroautophagy/autophagy-deficiency in the whole body of adult mice.  相似文献   
39.
Resistin is an adipokine that induces insulin resistance in mice. In humans, resistin is not produced in adipocytes, but in various leukocytes instead, and it acts as a proinflammatory molecule. The present investigation demonstrated high levels of resistin in culture supernatants of neutrophils that are stimulated by a highly leukotoxic strain of Aggregatibacter actinomycetemcomitans. In contrast, the level of resistin was remarkably low when neutrophils were exposed to two other strains that produce minimal levels of leukotoxin and a further isogenic mutant strain incapable of producing leukotoxin. Pretreatment of neutrophils with a monoclonal antibody to CD18, β chain of lymphocyte function-associated molecule 1 (LFA-1), or an Src family tyrosine kinase inhibitor before incubation with the highly leukotoxic strain inhibited the release of resistin. These results show that A. actinomycetemcomitans-expressed leukotoxin induces extracellular release of human neutrophil-derived resistin by interacting with LFA-1 on the surface of neutrophils and, consequently, activating Src family tyrosine kinases.  相似文献   
40.
Tick-borne encephalitis (TBE) virus causes severe encephalitis with serious sequelae in humans. An epizootiological survey of wild rodents is effective to detect TBE virus-endemic areas; however, limited serological diagnostic methods are available to detect anti-TBE virus antibodies in wild rodents. In this study, ELISAs for the detection of rodent antibodies against the TBE virus were developed using two recombinant proteins, domain III of the E protein (EdIII) and subviral particles (SPs), as the antigens. As compared with the neutralization test, the ELISA using EdIII had 77.1% sensitivity and 80.0% specificity, and the ELISA using SPs had 91.4% sensitivity and 100% specificity. Furthermore, when the ELISAs were applied to the epizootiological survey in the TBE virus-endemic area, both of the ELISAs was able to detect wild rodents with TBE virus-specific antibodies. This is the first study to show that ELISAs using recombinant antigens can be safe and useful in the detection of TBE virus-infected wild rodents in epizootiological research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号