首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   3篇
  58篇
  2021年   1篇
  2020年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2008年   5篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有58条查询结果,搜索用时 14 毫秒
41.
Morikawa  C.K.  Saigusa  M. 《Plant and Soil》2002,240(1):161-168
The influence of silicon on aluminium toxicity in barley (Hordeum vulgare L. cv. Shunrai) was studied in two Andosols. Silicon sources were a solution of sodium metasilicate with pH adjusted to 5.0, silica gel, and an industrial waste, porous hydrated calcium silicate. The waste is produced in large amounts in the manufacturing processes of autoclaved light concrete, and has been used as a silicon source for rice plants. The addition of the waste increased the concentration of Si in the soil solution, soil pH and amelioration of aluminium toxicity was observed. The addition of silica gel and sodium metasilicate solution to both soils increased significantly (p<0.05) the Si concentration of the soil solutions, but no amelioration of aluminium toxicity was observed. An amelioration of aluminium toxicity by the waste porous hydrated calcium silicate was probably due to the increase in soil pH rather than to the increase of silicon concentration in the soil solution.  相似文献   
42.
In mammalian cells, the autophagy-dependent degradation of mitochondria (mitophagy) is thought to maintain mitochondrial quality by eliminating damaged mitochondria. However, the physiological importance of mitophagy has not been clarified in yeast. Here, we investigated the physiological role of mitophagy in yeast using mitophagy-deficient atg32- or atg11-knock-out cells. When wild-type yeast cells in respiratory growth encounter nitrogen starvation, mitophagy is initiated, excess mitochondria are degraded, and reactive oxygen species (ROS) production from mitochondria is suppressed; as a result, the mitochondria escape oxidative damage. On the other hand, in nitrogen-starved mitophagy-deficient yeast, excess mitochondria are not degraded and the undegraded mitochondria spontaneously age and produce surplus ROS. The surplus ROS damage the mitochondria themselves and the damaged mitochondria produce more ROS in a vicious circle, ultimately leading to mitochondrial DNA deletion and the so-called "petite-mutant" phenotype. Cells strictly regulate mitochondrial quantity and quality because mitochondria produce both necessary energy and harmful ROS. Mitophagy contributes to this process by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production.  相似文献   
43.
A cDNA from deep water rice treated with ethylene, encoding an ethylene receptor homologous to Arabidopsis thaliana ETR2 and EIN4, was isolated using differential display and RACE techniques. The cDNA (2880 bp), corresponding to the Os-ERL1 gene (Oryza sativa ETHYLENE RESPONSE 2 like 1; GenBank accession number AB107219), contained an open reading frame of 2289 bp coding for 763 amino acids. The protein Os-ERL1 has 50% and 52% similarity to Arabidopsis ETR2 and EIN4, respectively. The Os-ERL1 gene was up-regulated by flooding, and by treatment with ethylene and gibberellin. These results suggest that deep water rice responds to flooding by increasing the number of its ethylene receptors.  相似文献   
44.
Coffee beans and tea leaves contain large amounts of potentially metal-chelating substances which could remain in the wastes after extraction by hot water. The following two experiments have been carried out: a) an incubation experiment with the objective of verify whether coffee grounds and green tea wastes could be used as an Fe chelating agent to increase Fe availability to plants in the soil; b) a pot experiment to verify the effect of those composts on the Fe content of the edible part of vegetables. Japanese leaf radish (Raphanus raphanus sp), whose the leaves are the edible part, was chosen as test plant. Calcareous subsoil (shell fossil soil) with original pH 9.3 and a B horizon of Andisol (Typic melanudand) with pH adjusted to 7.7 were used. For the incubation experiment, the treatments included of the direct addition of Fe at rates of 0 (control), 10, 20 and 40 μg g−1 dry soil as ferrous sulfate (FS); coffee waste compost (CWC) and tea waste compost (TWC). Both composts contained approximately 40 g Fe kg−1 dry mass. Thus, the total amounts of CWC and TWC added were of 0, 0.25, 0.5 and 1.0 mg g−1 soil. Considering a soil density of 1 g cm−3 and 10 cm of plow layer, the total amounts of compost applied were of 0, 0.25, 0.5 and 1.0 ton ha−1. Soil samples were collected after 30 and 60 days of incubation and then analyzed for plant available Fe. For the pot experiment, the doses of 0 (control) and 1 mg g−1 soil of CWC or TWC were used to grow radish. Plants were harvested after 60 days. For samples incubated for 30 days, the CWC and TWC treatments led to the largest increase in the ammonium bicarbonate diethylene triamine pentaacetic acid (AB-DTPA) extractable Fe levels of both soils (P < 0.05). After 60 days of incubation the amounts of AB-DTPA-extractable Fe in soil samples treated with both composts were always higher than in those treated with FS alone. For both soils, the application of 40 μg Fe g−1 dry soil as CWC or TWC enhanced significantly (P < 0.05) the total Fe content of radish shoots compared to the control. We concluded that it has been possible to increase the plant-available Fe in neutral to alkaline soils using coffee grounds and tea leaf wastes composted with FS. However, more research on the effectiveness in field conditions are necessary.  相似文献   
45.
46.
Mitophagy, which selectively degrades mitochondria via autophagy, has a significant role in mitochondrial quality control. When mitophagy is induced in yeast, mitochondrial residential protein Atg32 binds Atg11, an adaptor protein for selective types of autophagy, and it is recruited into the vacuole along with mitochondria. The Atg11-Atg32 interaction is believed to be the initial molecular step in which the autophagic machinery recognizes mitochondria as a cargo, although how this interaction is mediated is poorly understood. Therefore, we studied the Atg11-Atg32 interaction in detail. We found that the C-terminus region of Atg11, which included the fourth coiled-coil domain, interacted with the N-terminus region of Atg32 (residues 100-120). When mitophagy was induced, Ser-114 and Ser-119 on Atg32 were phosphorylated, and then the phosphorylation of Atg32, especially phosphorylation of Ser-114 on Atg32, mediated the Atg11-Atg32 interaction and mitophagy. These findings suggest that cells can regulate the amount of mitochondria, or select specific mitochondria (damaged or aged) that are degraded by mitophagy, by controlling the activity and/or localization of the kinase that phosphorylates Atg32. We also found that Hog1 and Pbs2, which are involved in the osmoregulatory signal transduction cascade, are related to Atg32 phosphorylation and mitophagy.  相似文献   
47.
48.
Seasonal changes in gross primary production (GPP) and net ecosystem production (NEP) in temperate deciduous forests are mostly driven by environmental conditions and the phenology of leaf demography. This study addresses another factor, temporal changes in leaf properties, i.e., leaf aging from emergence to senescence. A process-based model was used to link the ecosystem-scale carbon budget with leaf-level properties on the basis of field observation and scaling procedures; temporal variations in leaf thickness (leaf mass per area, LMA), photosynthetic rubisco (Vcmax) and electron-transport (Jmax) capacity, and dark respiration (Rd) were empirically parameterized. The model was applied to a cool-temperate deciduous broad-leaved forest at Takayama, in central Japan, and validated with data of net ecosystem CO2 exchange (NEE=–NEP) measured using the eddy-covariance method. NEP of the Takayama site varied seasonally from 3 g C m–2 day–1 net source in late winter to 5 g C m–2 day–1 net sink in early to mid-summer. A sensitivity experiment showed that removing the leaf-aging effect changed the seasonal CO2 exchange pattern, and led to overestimation of annual GPP by 6% and annual NEP by 38%. We found that seasonal variation in Vcmax affected the seasonal pattern and annual budget of CO2 exchange most strongly; LMA and Rd had moderate influences. The rapid change in Vcmax and Rd during leaf emergence and senescence was important in evaluating GPP and NEP of the temperate deciduous forest.  相似文献   
49.
Tropomyosin-related receptor kinase B (TrkB) signaling, stimulated by brain-derived neurotrophic factor (BDNF) ligand, promotes tumor progression, and is related to the poor prognosis of various malignancies. We sought to examine the clinical relevance of BDNF/TrkB expression in colorectal cancer (CRC) tissues, its prognostic value for CRC patients, and its therapeutic potential in vitro and in vivo. Two hundred and twenty-three CRC patient specimens were used to determine both BDNF and TrkB mRNA levels. The expression of these proteins in their primary and metastatic tumors was investigated by immunohistochemistry. CRC cell lines and recombinant BDNF and K252a (a selective pharmacological pan-Trk inhibitor) were used for in vitro cell viability, migration, invasion, anoikis resistance and in vivo peritoneal metastasis assays. Tissue BDNF mRNA was associated with liver and peritoneal metastasis. Tissue TrkB mRNA was also associated with lymph node metastasis. The co-expression of BDNF and TrkB was associated with liver and peritoneal metastasis. Patients with higher BDNF, TrkB, and co-expression of BDNF and TrkB had a significantly poor prognosis. BDNF increased tumor cell viability, migration, invasion and inhibited anoikis in the TrkB-expressing CRC cell lines. These effects were suppressed by K252a. In mice injected with DLD1 co-expressing BDNF and TrkB, and subsequently treated with K252a, peritoneal metastatic nodules was found to be reduced, as compared with control mice. BDNF/TrkB signaling may thus be a potential target for treating peritoneal carcinomatosis arising from colorectal cancer.  相似文献   
50.
The mud shrimp, Upogebia major is a gonochoristic species with distinct sexual dimorphism; however, the male has the “ovarian part of testis” in the gonad and mature-looking eggs appear in a similar reproductive cycle to the female. Vitellogenesis of U. major was investigated focusing on the characterization of vitellogenin (Vg) gene expression and Vg processing. Vg cDNA cloned by PCR-based methods was 7799 bp-long, encoding 2568 amino acids in a single open reading frame. The deduced amino acid sequence shared common characteristics conserved in other shrimp Vgs. The Vg gene was expressed in the hepatopancreas of females and males, the ovary, and the ovarian part of testis. Vitellins (Vns) were detected in the gonads of both females and males as three prominent polypeptides with apparent molecular masses of 82 kDa, 100 kDa, and 115 kDa. N-terminal amino acid sequences determined for the three polypeptides were present in the deduced amino acid sequence, demonstrating that they derived from a single long Vg polypeptide. Immunoblot analysis using polyclonal antibodies raised against two Vns (82 kDa and 100 kDa) confirmed Vg processing in the hepatopancreas, in the hemolymph and possibly in the oocytes, similarly in both sexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号