首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   3篇
  2021年   1篇
  2020年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2008年   5篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
21.
Plant and Soil - Using free-air CO2 enrichment (FACE) we grew rice crops at ambient or elevated (ca.&;nbsp;250&;nbsp;μmol mol?1 above ambient) and evaluated soil nutrition status...  相似文献   
22.
Human lymphocytes exposed to 0.02 Gy of X-rays in the G1 but not the G0 phase became less susceptible to the induction of chromosome aberrations of the chromosome type by subsequent exposure to 3 Gy of X-rays. The induction of chromatid-type aberrations was not affected by the pretreatment with the priming dose. The expression of this adaptive-type response was transitory, being maximum at 5 h, and disappeared at 9 h after the initial low-dose exposure. Cell-cycle analysis excluded the possibility of a spurious consequence of differential cell-cycle progression.  相似文献   
23.
A pair of rosette glands (one of the tegumental glands in crustaceans) is present at the root of the dorsal spine of the thorax in mature embryos of the estuarine crab Sesarma haematocheir. Each rosette gland is spherical, 45-50 microm in diameter. This gland consists of three types of cells: 18-20 secretory cells, one central cell, and one canal cell. The secretory cells are further classified into two types on the basis of the morphology of secretory granules. There are 17-19 a cells, and only one b cell per rosette gland. An a cell contains spherical secretory granules of 2-3 microm in diameter. The granules are filled with highly electron-dense materials near the nucleus but have lower electron-density near the central cell. The secretory granules contained in the b cell have an irregular shape and are 1-1.5 microm in diameter. The density of the materials in the granules is uniform throughout the cytoplasm. The secretory granules contained in both the a and b cells are produced by the rough endoplasmic reticulum. Materials in the granules are exocytotically discharged into the secretory apparatus inside the secretory cell, sent to the extracellular channels in the central cell, and secreted through the canal cell. The rosette gland can be distinguished from the epidermal cells 2 weeks after egg-laying and the gland matures just before hatching. Materials produced by this gland are secreted after hatching and secretion continues through five stages of zoeal larvae. These rosette glands were never found in the megalopal larva. Rosette glands are found in the embryos of Sesarma spp. and Uca spp. In other crabs, tegumental glands are also found at the same position as in the embryo of S. haematocheir, but the fine structure of their glands is largely different from that of the rosette gland. On the basis of the morphology of secretory cells (a-g cell types), the tegumental glands of a variety of crab embryos can be classified into four types, including rosette glands (type I-IV). The function of these tegumental glands is not yet known, but different types of the gland seem to reflect the phylogeny of the crabs rather than differences of habitat.  相似文献   
24.
Lysophospholipids (LysoGPs) serve as lipid mediators and precursors for synthesis of diacyl phospholipids (GPs). LysoGPs detected in cells have various acyl chains attached at either the sn-1 or sn-2 position of the glycerol backbone. In general, acyl chains at the sn-2 position of 2-acyl-1-LysoGPs readily move to the sn-1 position, generating 1-acyl-2-lyso isomers by a nonenzymatic reaction called intra-molecular acyl migration, which has hampered the detection of 2-acyl-1-LysoGPs in biological samples. In this study, we developed a simple and versatile method to separate and quantify 2-acyl-1- and 1-acyl-2-LysoGPs. The main point of the method was to extract LysoGPs at pH 4 and 4°C, conditions that were found to completely eliminate the intra-molecular acyl migration. Under the present conditions, the relative amounts of 2-acyl-1-LysoGPs and 1-acyl-2-LysoGPs did not change at least for 1 week. Further, in LysoGPs extracted from cells and tissues under the present conditions, most of the saturated fatty acids (16:0 and 18:0) were found in the sn-1 position of LysoGPs, while most of the PUFAs (18:2, 20:4, 22:6) were found in the sn-2 position. Thus the method can be used to elucidate the in vivo role of 2-acyl-1-LysoGPs.  相似文献   
25.
The subfamily Apaturinae consists of 20 genera and shows disjunct distributions and unique host-plant associations. Most genera of this subfamily are distributed in Eurasia South-East Asia and Africa, whereas the genera Doxocopa and Asterocampa are distributed mainly in South America and North America, respectively. Although the Apaturinae larvae mainly feed on the Cannabaceae, those of the genus Apatura are associated with Salix and Populus (Salicaceae), which are distantly related to the Cannabaceae. Here, we infer the phylogeny of Apaturinae and reconstruct the history of host shifting and of colonization in the New World. We analyzed 9761 bp of nuclear and mitochondrial DNA sequence data, including the genes encoding EF1a, Wg, ArgK, CAD, GAPDH, IDH, MDH, RpS5, COI, COII, ATPase8, ATPase6, COIII, ND3, and ND5 for 12 apaturine genera. We also inferred the phylogeny with six additional genera using mitochondrial sequence data alone. Within the Apaturinae, two major clades are recovered in all the datasets. These clades separate the New World genera, Doxocopa and Asterocampa, indicating that dispersal to the New World occurred at least twice. According to our divergence time estimates, these genera originated during the Early Oligocene to the Early Miocene, implying that they migrated across the Bering Land Bridge rather than the Atlantic Land Bridge. The temporal estimates also show that host shifting to Salix or Populus in Apatura occurred more than 15 million years after the divergence of their host plants. Our phylogenetic results are inconsistent with the previously accepted apaturine genus groups and indicate that their higher classification should be reconsidered.  相似文献   
26.
27.
Mitophagy is a process that selectively degrades mitochondria. When mitophagy is induced in yeast, the mitochondrial outer membrane protein Atg32 is phosphorylated, interacts with the adaptor protein Atg11 and is recruited into the vacuole with mitochondria. We screened kinase‐deleted yeast strains and found that CK2 is essential for Atg32 phosphorylation, Atg32–Atg11 interaction and mitophagy. Inhibition of CK2 specifically blocks mitophagy, but not macroautophagy, pexophagy or the Cvt pathway. In vitro, CK2 phosphorylates Atg32 at serine 114 and serine 119. We conclude that CK2 regulates mitophagy by directly phosphorylating Atg32.  相似文献   
28.
We developed a method, namely Adaptive Population Monte Carlo Approximate Bayesian Computation (APMC), to estimate the parameters of Farquhar photosynthesis model. Treating the canopy as a big leaf, we applied this method to derive the parameters at canopy scale. Validations against observational data showed that parameters estimated based on the APMC optimization are un-biased for predicting the photosynthesis rate. We conclude that APMC has greater advantages in estimating the model parameters than those of the conventional nonlinear regression models.  相似文献   
29.
Ovigerous-hair stripping substance (OHSS) is an active factor in crab hatch water (i.e., filtered medium into which zoea larvae have been released). This factor participates in stripping off the egg attachment structures (i.e., egg case, funiculus, and the coat investing ovigerous hairs) that remain attached to the female's ovigerous hairs after larval release. Thus this activity prepares the hairs for the next clutch of embryos. OHSS activity of an estuarine crab, Sesarma haematocheir, eluted as a single peak on molecular-sieve chromatography, but this peak still showed two protein bands at 32 kDa and 30 kDa on SDS-PAGE. The two protein bands stained with a polyclonal antiserum raised to the active fractions from molecular-sieve chromatography. Moreover, antibodies purified from this polyclonal OHSS antiserum also recognized both the 32-kDa and 30-kDa bands. OHSS immunoreactivity and biological activity were associated with the attachment structures that remained connected to the ovigerous hairs after hatching. In developing embryos, both protein bands could be stained immunochemically at least 10 days before hatching. But OHSS biological activity appeared only 3 days before hatching. The immunoreactive protein bands were not observed in the zoea, but OHSS bioreactivity was present, though greatly reduced. The 32-kDa protein, at least, is probably an active OHSS, and the 30-kDa protein band may also be OHSS-related. The OHSS appears to be produced and stored by the developing embryo. Upon hatching, most of the material may be trapped by the remnant structures, and the remainder is released into the ambient water.  相似文献   
30.
In most decapod crustaceans, fertilized eggs extruded from the gonopore attach to ovigerous hairs within the incubation chamber of the female. The attachment is effected by an "embryo attachment system." The three continuous components of this system are the egg envelope, the funiculus, and the investment coat, which wraps around an ovigerous hair. Transmission electron microscopy (TEM) revealed that the embryo of Sesarma haematocheir is enfolded by three distinct envelopes (E1, E2, and E3), whereas the embryo attachment system is composed of only the outermost, single envelope (E1) with two sublayers (E1a and E1b). This envelope (E1) originates from the outer layer of the vitelline membrane (envelope of the ovum) with two sublayers (E1a' and E1b'). The sequence and timing of events in the formation of the embryo attachment system was determined on the basis of observations of female behavior, ultrastructure, and mechanical properties of the membranes. The egg envelope (E1a' + E1b') is not adhesive immediately after extrusion from the gonopore; but 5 min after egg-laying, it becomes adhesive-a change associated with "fusion" of the two sublayers (E1)-and attaches the eggs to the ovigerous hairs from 5 to 30 min after egg-laying. The layer E1a' always binds to an ovigerous hair at specific, electron-dense attachment sites that are distributed longitudinally on the surface of each hair. Plasticity of the egg envelope changes, and the female kneads her eggs by the movement of ovigerous setae; this movement forms the investment coat on the ovigerous hair (10-40 min after egg-laying). Thirty minutes after egg-laying, the egg envelope again divides into two sublayers (E1a and E1b), and the adhesiveness rapidly decreases. The plasticity of the envelope remains, and the funiculus is formed, accompanied by kneading of the eggs (40-90 min after egg-laying). The embryos hatch one month after incubation, and the attachment systems all slip off their ovigerous hairs by the actions of the ovigerous-hair slipping substance (OHSS). This substance appears to act specifically at the attachment sites on the hair, lysing the bond with layer E1a, and thereby disposing of the embryonic attachment system and preparing the hairs for the next clutch of embryos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号