首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   97篇
  401篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   9篇
  2014年   6篇
  2013年   8篇
  2012年   7篇
  2011年   10篇
  2010年   7篇
  2009年   3篇
  2008年   3篇
  2007年   14篇
  2006年   11篇
  2005年   15篇
  2004年   13篇
  2003年   18篇
  2002年   14篇
  2001年   15篇
  2000年   15篇
  1999年   16篇
  1998年   10篇
  1997年   6篇
  1996年   13篇
  1995年   6篇
  1994年   13篇
  1993年   10篇
  1992年   12篇
  1991年   11篇
  1990年   15篇
  1989年   10篇
  1988年   12篇
  1987年   9篇
  1986年   3篇
  1985年   10篇
  1984年   5篇
  1983年   9篇
  1982年   8篇
  1981年   6篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
  1968年   3篇
  1967年   3篇
  1951年   1篇
排序方式: 共有401条查询结果,搜索用时 15 毫秒
71.
J J Ye  M H Saier  Jr 《Journal of bacteriology》1996,178(12):3557-3563
By using both metabolizable and nonmetabolizable sugar substrates of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), we show that PTS sugar uptake into intact cells and membrane vesicles of Lactococcus lactis and Bacillus subtilis is strongly inhibited by high concentrations of any of several metabolizable PTS sugars. Inhibition requires phosphorylation of seryl residue 46 in the phosphocarrier protein of the PTS, HPr, by the metabolite-activated, ATP-dependent protein kinase. Inhibition does not occur when wild-type HPr is replaced by the S46A mutant form of this protein either in vesicles of L. lactis or B. subtilis or in intact cells of B. subtilis. Nonmetabolizable PTS sugar analogs such as 2-deoxyglucose inhibit PTS sugar uptake by a distinct mechanism that is independent of HPr(ser-P) and probably involves cellular phosphoenolpyruvate depletion.  相似文献   
72.
M Yamada  B U Feucht    M H Saier  Jr 《Journal of bacteriology》1987,169(12):5416-5422
The gut operon was subcloned into various plasmid vectors (M. Yamada and M. H. Saier, Jr., J. Bacteriol. 169:2990-2994, 1987). Constitutive expression of the plasmid-encoded operon prevented utilization of alanine and Krebs cycle intermediates when they were provided as sole sources of carbon for growth. Expression of the gutB gene alone (encoding the glucitol enzyme III), subcloned downstream from either the lactose promoter or the tetracycline resistance promoter, inhibited utilization of the same compounds. On the other hand, overexpression of the gutA gene (encoding the glucitol enzyme II) inhibited the utilization of a variety of sugars as well as alanine and Krebs cycle intermediates by an apparently distinct mechanism. Phosphoenolpyruvate carboxykinase activity was greatly reduced in cells expressing high levels of the cloned gutB gene but was nearly normal in cells expressing high levels of the gutA gene. A chromosomal mutation in the gutR gene, which gave rise to constitutive expression of the chromosomal gut operon, also gave rise to growth inhibition on gluconeogenic substrates as well as reduced phosphoenolpyruvate carboxykinase activity. Phosphoenolpyruvate synthase activity in general varied in parallel with that of phosphoenolpyruvate carboxykinase. These results suggest that high-level expression of the glucitol enzyme III of the phosphotransferase system can negatively regulate gluconeogenesis by repression or inhibition of the two key gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and phosphoenolpyruvate synthase.  相似文献   
73.
Approximately 60 mutants of Salmonella typhimurium were isolated which exhibited altered levels of the activities of the mannitol enzyme II. The mutants were grouped into six distinct categories based on their mannitol fermentation, transport, chemotaxis, and phosphorylation activities.  相似文献   
74.
Starved cells of Streptococcus lactis ML3 (grown previously on galactose, lactose, or maltose) accumulated methyl-beta-D-thiogalactopyranoside (TMG) by the lactose:phosphotransferase system. More than 98% of accumulated sugar was present as a phosphorylated derivative, TMG-6-phosphate (TMG-6P). When a phosphotransferase system sugar (glucose, mannose, 2-deoxyglucose, or lactose) was added to the medium simultaneously with TMG, the beta-galactoside was excluded from the cells. Galactose enhanced the accumulation of TMG-6P. Glucose, mannose, lactose, or maltose plus arginine, was added to a suspension of TMG-6P-loaded cells of S. lactis ML3, elicited rapid expulsion of intracellular solute. The material recovered in the medium was exclusively free TMG. Expulsion of galactoside required both entry and metabolism of an appropriate sugar, and intracellular dephosphorylation of TMG-6P preceded efflux of TMG. The rate of dephosphorylation of TMG-6P by permeabilized cells was increased two-to threefold by adenosine 5'-triphosphate but was strongly inhibited by fluoride. S. lactis ML3 (DGr) was derived from S. lactis ML3 by positive selection for resistance to 2-deoxy-D-glucose and was defective in the enzyme IIMan component of the glucose:phosphotransferase system. Neither glucose nor mannose excluded TMG from cells of S. lactic ML3 (DGr), and these two sugars failed to elicit TMG expulsion from preloaded cells of the mutant strain. Accumulation of TMG-6P by S. lactis ML3 can be regulation by two independent mechanisms whose activities promote exclusion or expulsion of galactoside from the cell.  相似文献   
75.
A total of 1,911 proteins with N-terminal methionyl residues were computer screened for potential N-terminal alpha-helices with strong amphipathic character. By the criteria of D. Eisenberg (Annu. Rev. Biochem. 53:595-623, 1984), only 3.5% of nonplastid, nonviral proteins exhibited potential N-terminal alpha-helices, 18 residues in length, with hydrophobic moment values per amino acyl residue ([muH]) in excess of 0.4. By contrast, 10% of viral proteins exhibited corresponding [muH] values in excess of 0.4. Of these viral proteins with known functions, 55% were found to interact functionally with nucleic acids, 30% were membrane-interacting proteins or their precursors, and 15% were structural proteins, primarily concerned with host cell interactions. These observations suggest that N-terminal amphipathic alpha-helices of viral proteins may (i) function in nucleic acid binding, (ii) facilitate membrane insertion, and (iii) promote host cell interactions. Analyses of potential amphipathic N-terminal alpha-helices of cellular proteins are also reported, and their significance to organellar or envelope targeting is discussed.  相似文献   
76.
S L Sutrina  J Reizer    M H Saier  Jr 《Journal of bacteriology》1988,170(4):1874-1877
Expulsion of preaccumulated methyl-beta-D-thiogalactoside-phosphate (TMG-P) from Streptococcus pyogenes is a two-step process comprising intracellular dephosphorylation of TMG-P followed by rapid efflux of the intracellularly formed free galactoside (J. Reizer, M.J. Novotny, C. Panos, and M.H. Saier, Jr., J. Bacteriol. 156:354-361, 1983). The present study identifies the mechanism and the order and characterizes the temperature dependency of the efflux step. Unidirectional efflux of the intracellularly formed [14C]TMG was only slightly affected when measured in the presence of unlabeled TMG (25 to 400 mM) in the extracellular medium. In contrast, pronounced inhibition of net efflux was observed in the presence of relatively low concentrations (1 to 16 mM) of extracellular [14C]TMG. Since net efflux was nearly arrested when the external concentration of [14C]TMG approached the intracellular concentration of this sugar, we propose that a facilitated diffusion mechanism is responsible for efflux and equilibration of TMG between the intracellular and extracellular milieus. The exit reaction was markedly dependent upon temperature, exhibited a high energy of activation (23 kcal [ca. 96 kJ] per mol), and followed first-order kinetics, indicating that the permease mediating this efflux was not saturated under the conditions of expulsion employed.  相似文献   
77.
78.
79.
Evolution of the MIP family of integral membrane transport proteins   总被引:17,自引:0,他引:17  
Six integral membrane proteins of bacterial, animal, and plant origin, which are believed to function in solute transport, share sequence identity and are grouped together as members of the MIP family. These include the Escherichia coli glycerol facilitator, the major intrinsic protein from bovine lens fibre junction membranes, a plant tonoplast membrane protein, a soybean protein from the peribacteroid membrane, and a Drosophila neurogenic protein. These proteins, each of which appears to consist of six transmembrane helical segments per subunit, apparently arose by internal duplication of a three-transmembrane segment. Phylogenetic‘trees’interrelating these proteins and segments are presented.  相似文献   
80.
Several carbohydrate permease systems in Salmonella typhimurium and Escherichia coli are sensitive to regulation by the phosphoenolpyruvate:sugar phosphotransferase system. Mutant Salmonella strains were isolated in which individual transport systems had been rendered insensitive to regulation by sugar substrates of the phosphotransferase system. In one such strain, glycerol uptake was insensitive to regulation; in another, the maltose transport system was resistant to inhibition; and in a third, the regulatory mutation specifically rendered the melibiose permease insensitive to regulation. An analogous mutation in E. coli abolished inhibition of the transport of beta-galactosides via the lactose permease system. The mutations were mapped near the genes which code for the affected transport proteins. The regulatory mutations rendered utilization of the particular carbohydrates resistant to inhibition and synthesis of the corresponding catabolic enzymes partially insensitive to repressive control by sugar substrates of the phosphotransferase system. Studies of repression of beta-galactosidase synthesis in E. coli were conducted with both lactose and isopropyl beta-thiogalactoside as exogenous sources of inducer. Employing high concentrations of isopropyl beta-thiogalactoside, repression of beta-galactosidase synthesis was not altered by the lactose-specific transport regulation-resistant mutation. By contrast, the more severe repression observed with lactose as the exogenous source of inducer was partially abolished by this regulatory mutation. The results support the conclusions that several transport systems, including the lactose permease system, are subject to allosteric regulation and that inhibition of inducer uptake is a primary cause of the repression of catabolic enzyme synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号