首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1894篇
  免费   115篇
  国内免费   42篇
  2051篇
  2024年   5篇
  2023年   22篇
  2022年   38篇
  2021年   78篇
  2020年   52篇
  2019年   39篇
  2018年   64篇
  2017年   43篇
  2016年   70篇
  2015年   97篇
  2014年   116篇
  2013年   133篇
  2012年   177篇
  2011年   158篇
  2010年   115篇
  2009年   83篇
  2008年   86篇
  2007年   96篇
  2006年   78篇
  2005年   72篇
  2004年   71篇
  2003年   62篇
  2002年   52篇
  2001年   30篇
  2000年   25篇
  1999年   10篇
  1998年   14篇
  1997年   10篇
  1996年   13篇
  1995年   8篇
  1994年   11篇
  1993年   12篇
  1992年   22篇
  1991年   12篇
  1990年   4篇
  1989年   7篇
  1988年   7篇
  1987年   9篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1982年   3篇
  1981年   4篇
  1979年   3篇
  1977年   3篇
  1976年   7篇
  1975年   4篇
  1973年   2篇
  1971年   3篇
  1970年   3篇
排序方式: 共有2051条查询结果,搜索用时 15 毫秒
941.
Intracellular Zn2+ toxicity is associated with mitochondrial dysfunction. Zn2+ depolarizes mitochondria in assays using isolated organelles as well as cultured cells. Some reports suggest that Zn2+-induced depolarization results from the opening of the mitochondrial permeability transition pore (mPTP). For a more detailed analysis of this relationship, we compared Zn2+-induced depolarization with the effects of Ca2+ in single isolated rat liver mitochondria monitored with the potentiometric probe rhodamine 123. Consistent with previous work, we found that relatively low levels of Ca2+ caused rapid, complete and irreversible loss of mitochondrial membrane potential, an effect that was diminished by classic inhibitors of mPT, including high Mg2+, ADP and cyclosporine A. Zn2+ also depolarized mitochondria, but only at relatively high concentrations. Furthermore Zn2+-induced depolarization was slower, partial and sometimes reversible, and was not affected by inhibitors of mPT. We also compared the effects of Ca2+ and Zn2+ in a calcein-retention assay. Consistent with the well-documented ability of Ca2+ to induce mPT, we found that it caused rapid and substantial loss of matrix calcein. In contrast, calcein remained in Zn2+-treated mitochondria. Considered together, our results suggest that Ca2+ and Zn2+ depolarize mitochondria by considerably different mechanisms, that opening of the mPTP is not a direct consequence of Zn2+-induced depolarization, and that Zn2+ is not a particularly potent mitochondrial inhibitor.  相似文献   
942.
Pathological ocular neovascularization, caused by diabetic retinopathy, age-related macular degeneration, or retinopathy of prematurity, is a leading cause of blindness, yet much remains to be learned about its underlying causes. Here we used oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) to assess the contribution of the metalloprotease-disintegrin ADAM9 to ocular neovascularization in mice. Pathological neovascularization in both the OIR and CNV models was significantly reduced in Adam9/ mice compared to wild-type controls. In addition, the level of ADAM9 expression was strongly increased in endothelial cells in pathological vascular tufts in the OIR model. Moreover, tumor growth from heterotopically injected B16F0 melanoma cells was reduced in Adam9/ mice compared to controls. In cell-based assays, the overexpression of ADAM9 enhanced the ectodomain shedding of EphB4, Tie-2, Flk-1, CD40, VCAM, and VE-cadherin, so the enhanced expression of ADAM9 could potentially affect pathological neovascularization by increasing the shedding of these and other membrane proteins from endothelial cells. Finally, we provide the first evidence for the upregulation of ADAM9-dependent shedding by reactive oxygen species, which in turn are known to play a critical role in OIR. Collectively, these results suggest that ADAM9 could be an attractive target for the prevention of proliferative retinopathies, CNV, and cancer.Ocular neovascularization is one of the leading causes of blindness in humans and is found in diverse eye diseases including diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity (3, 4, 6). In addition, pathological neovascularization also has critical roles in other diseases such as cancer and rheumatoid arthritis (12, 14). Although proteins with crucial functions in pathological neovascularization are considered to be important targets for the treatment of tumor growth (5), proliferative retinopathies (19), and rheumatoid arthritis (12), much remains to be learned about the identity of these molecules and the mechanisms underlying their function. In this study, we focused on the contribution of a disintegrin and metalloprotease, ADAM9, to pathological neovascularization.ADAM9, one of the first ADAM proteins to be identified and characterized, is a membrane-anchored metalloproteinase containing an N-terminal prodomain followed by a metalloprotease domain, a disintegrin domain and cysteine-rich region, an epidermal growth factor (EGF) repeat, a transmembrane domain, and a cytoplasmic tail with potential SH3 ligand domains (25). ADAM9 is catalytically active in both biochemical and cell-based assays and can cleave several membrane proteins including EGF and FGFR2iiib when it is overexpressed together with these substrates (10, 15, 16). In addition, ADAM9 is thought to participate in cell-cell interactions by binding to integrins (13, 30). Mice lacking ADAM9 have no evident major abnormalities during development or adult life (24) but show reduced levels of tumorigenesis in a mouse model for prostate cancer (15). In the current study, we evaluated whether ADAM9 contributes to pathological neovascularization using a mouse model for retinopathy of prematurity, the oxygen-induced retinopathy (OIR) model, as well as a model of laser-induced choroidal neovascularization (CNV). Moreover, we determined how the lack of ADAM9 affects the growth of heterotopically injected tumor cells in mice. Finally, we assessed whether overexpressed ADAM9 can process substrate proteins with known roles in angiogenesis and tested whether the catalytic activity of endogenous ADAM9 is regulated by reactive oxygen species (ROS) in cell-based assays, as ROS upregulate the expression of ADAM9 (20, 22) and are known to play important roles in pathological retinal neovascularization (9, 27).  相似文献   
943.
Historical fragmentation and a current annual deforestation rate of 1.2% in the Western Ghats biodiversity hotspot have resulted in a human-dominated landscape of plantations, agriculture, and developed areas, with embedded rainforest fragments that form biodiversity refuges and animal corridors. On private lands in the Anamalai hills, India, we established restoration sites within three rainforest fragments (5, 19, and 100 ha) representing varying levels of degradation such as open meadow, highly degraded sites with dense Lantana camara invasion, abandoned exotic tree plantations ( Eucalyptus grandis and Maesopsis eminii ), and sites with mixed-native and exotic tree canopy. Between 2000 and 2004, we planted annually during the southwest monsoon 7,538 nursery-raised seedlings of around 127 species in nine sites (0.15–1.0 ha). Seedlings monitored at 6-monthly intervals showed higher mortality over the dry season than the wet season and survival rates over a 2-year period of between 34.4 and 90.3% under different site conditions. Seedling survival was higher in sites with complete weed removal as against partial removal along planting lines and higher in open meadow and under shade than in sites that earlier had dense weed invasion. Of 44 species examined, survival across sites after 24 months for a majority of species (27 species, 61.4%) was higher than 50%. Retaining regenerating native species during weed clearing operations was crucial for rapid reestablishment of a first layer of canopy to shade out weeds and enhance survival of shade-tolerant rainforest seedlings.  相似文献   
944.
Integumentary wounds in mammalian fetuses heal without scar; this scarless wound healing is intrinsic to fetal tissues and is notable for absence of the contraction seen in postnatal (adult) wounds. The precise molecular signals determining the scarless phenotype remain unclear. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta) is specifically reduced in healing fetal wounds in a rabbit model. In this study, we examine the role of CCT-eta in fibroblast motility and contractility, properties essential to wound healing and scar formation. We demonstrate that CCT-eta (but not CCT-beta) is underexpressed in fetal fibroblasts compared to adult fibroblasts. An in vitro wound healing assay demonstrated that adult fibroblasts showed increased cell migration in response to epidermal growth factor (EGF) and platelet derived growth factor (PDGF) stimulation, whereas fetal fibroblasts were unresponsive. Downregulation of CCT-eta in adult fibroblasts with short inhibitory RNA (siRNA) reduced cellular motility, both basal and growth factor-induced; in contrast, siRNA against CCT-beta had no such effect. Adult fibroblasts were more inherently contractile than fetal fibroblasts by cellular traction force microscopy; this contractility was increased by treatment with EGF and PDGF. CCT-eta siRNA inhibited the PDGF-induction of adult fibroblast contractility, whereas CCT-beta siRNA had no such effect. In each of these instances, the effect of downregulating CCT-eta was to modulate the behavior of adult fibroblasts so as to more closely approximate the characteristics of fetal fibroblasts. We next examined the effect of CCT-eta modulation on alpha-smooth muscle actin (α-SMA) expression, a gene product well known to play a critical role in adult wound healing. Fetal fibroblasts were found to constitutively express less α-SMA than adult cells. Reduction of CCT-eta with siRNA had minimal effect on cellular beta-actin but markedly decreased α-SMA; in contrast, reduction of CCT-beta had minimal effect on either actin isoform. Direct inhibition of α-SMA with siRNA reduced both basal and growth factor-induced fibroblast motility. These results indicate that CCT-eta is a specific regulator of fibroblast motility and contractility and may be a key determinant of the scarless wound healing phenotype by means of its specific regulation of α-SMA expression.  相似文献   
945.

Background

Wharton''s jelly derived stem cells (WJMSCs) are gaining attention as a possible clinical alternative to bone marrow derived mesenchymal stem cells (BMMSCs) owing to better accessibility, higher expansion potential and low immunogenicity. Usage of allogenic mesenchymal stem cells (MSC) could be permissible in vivo only if they retain their immune properties in an inflammatory setting. Thus the focus of this study is to understand and compare the immune properties of BMMSCs and WJMSCs primed with key pro-inflammatory cytokines, Interferon-γ (IFNγ) and Tumor Necrosis Factor-α (TNFα).

Methodology/Principal Findings

Initially the effect of priming on MSC mediated suppression of alloantigen and mitogen induced lymphoproliferation was evaluated in vitro. Treatment with IFNγ or TNFα, did not ablate the immune-suppression caused by both the MSCs. Extent of immune-suppression was more with WJMSCs than BMMSCs in both the cases. Surprisingly, priming BMMSCs enhanced suppression of mitogen driven lymphoproliferation only; whereas IFNγ primed WJMSCs were better suppressors of MLRs. Further, kinetic analysis of cytokine profiles in co-cultures of primed/unprimed MSCs and Phytohematoagglutinin (PHA) activated lymphocytes was evaluated. Results indicated a decrease in levels of pro-inflammatory cytokines. Interestingly, a change in kinetics and thresholds of Interleukin-2 (IL-2) secretion was observed only with BMMSCs. Analysis of activation markers on PHA-stimulated lymphocytes indicated different expression patterns in co-cultures of primed/unprimed WJMSCs and BMMSCs. Strikingly, co-culture with WJMSCs resulted in an early activation of a negative co-stimulatory molecule, CTLA4, which was not evident with BMMSCs. A screen for immune suppressive factors in primed/unprimed WJMSCs and BMMSCs indicated inherent differences in IFNγ inducible Indoleamine 2, 3-dioxygenase (IDO) activity, Hepatocyte growth factor (HGF) and Prostaglandin E-2 (PGE2) levels which could possibly influence the mechanism of immune-modulation.

Conclusion/Significance

This study demonstrates that inflammation affects the immune properties of MSCs distinctly. Importantly different tissue derived MSCs could utilize unique mechanisms of immune-modulation.  相似文献   
946.
The internalization of essential nutrients, lipids and receptors is a crucial process for all eukaryotic cells. Accordingly, endocytosis is highly conserved across cell types and species. Once internalized, small cargo-containing vesicles fuse with early endosomes (also known as sorting endosomes), where they undergo segregation to distinct membrane regions and are sorted and transported on through the endocytic pathway. Although the mechanisms that regulate this sorting are still poorly understood, some receptors are directed to late endosomes and lysosomes for degradation, whereas other receptors are recycled back to the plasma membrane; either directly or through recycling endosomes. The Rab family of small GTP-binding proteins plays crucial roles in regulating these trafficking pathways. Rabs cycle from inactive GDP-bound cytoplasmic proteins to active GTP-bound membrane-associated proteins, as a consequence of the activity of multiple specific GTPase-activating proteins (GAPs) and GTP exchange factors (GEFs). Once bound to GTP, Rabs interact with a multitude of effector proteins that carry out Rab-specific functions. Recent studies have shown that some of these effectors are also interaction partners for the C-terminal Eps15 homology (EHD) proteins, which are also intimately involved in endocytic regulation. A particularly interesting example of common Rab-EHD interaction partners is the MICAL-like protein, MICAL-L1. MICAL-L1 and its homolog, MICAL-L2, belong to the larger MICAL family of proteins, and both have been directly implicated in regulating endocytic recycling of cell surface receptors and junctional proteins, as well as controlling cytoskeletal rearrangement and neurite outgrowth. In this review, we summarize the functional roles of MICAL and Rab proteins, and focus on the significance of their interactions and the implications for endocytic transport.  相似文献   
947.
A virus associated with severe mosaic disease of gherkin (Cucumis anguria L.) in south India was identified. The infected plants showed mosaic, vein banding, blistering on malformed leaves and fruits. Host range, transmission, serological and electron microscopic studies were carried out to identify the virus. The virus was readily transmitted by Sap inoculation and by aphids in a non-persistent manner. The host range of the virus was mainly limited to cucurbitaceous and chenopodium species. The virus showed positive serological relationships with members of potyvirus genus but not with cucumo, ilar and taspoviruses. Electron microscopy of leaf dip preparation of infected leaves revealed long flexuous filamentous virus particles measuring 750 × 12 nm. On the basis of symptomotology, host range, transmission, serology and particle morphology the virus associated with mosaic disease of gherkin might be the member of potyvirus genus.  相似文献   
948.
949.
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号