首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1630篇
  免费   101篇
  国内免费   43篇
  1774篇
  2023年   20篇
  2022年   31篇
  2021年   66篇
  2020年   37篇
  2019年   36篇
  2018年   58篇
  2017年   50篇
  2016年   45篇
  2015年   59篇
  2014年   83篇
  2013年   143篇
  2012年   123篇
  2011年   111篇
  2010年   65篇
  2009年   54篇
  2008年   63篇
  2007年   64篇
  2006年   49篇
  2005年   62篇
  2004年   52篇
  2003年   49篇
  2002年   51篇
  2001年   39篇
  2000年   33篇
  1999年   13篇
  1998年   12篇
  1997年   16篇
  1996年   17篇
  1995年   9篇
  1994年   8篇
  1992年   12篇
  1991年   13篇
  1990年   9篇
  1989年   7篇
  1988年   9篇
  1987年   10篇
  1986年   9篇
  1985年   8篇
  1981年   7篇
  1980年   10篇
  1979年   8篇
  1977年   9篇
  1976年   12篇
  1975年   10篇
  1974年   10篇
  1973年   7篇
  1971年   13篇
  1970年   9篇
  1969年   7篇
  1968年   9篇
排序方式: 共有1774条查询结果,搜索用时 15 毫秒
71.
Abstract

Antibiotic netropsin is known to bind specifically to A and T regions in DNA; the mode of binding being non-intercalative. Obviously, H-bonding between the proton donors of netropsin and acceptors N3 of A and 02 of T comes as a strong possibility which might render this specificity. In netropsin there could be 8 proton donors: four terminal amino groups and four internal imino groups. However, methylation of the terminal amino groups does not alter the binding affinity of netropsin to DNA—but the modification of the internal imino groups significantly lowers the binding affinity. Hence, the logical conclusion is that netropsin may specifically interact with A and T through H-bonding and in order to do so, it should approach the helix from the minor groove. The present paper provides experimental data which verify the conclusion mentioned above.

Using poly(dA-dT)? poly(dA-dT) as a model system it was observed following a thorough theoretical stereochemical analysis that netropsin could bind to -(T-A-T) sequence of the polymer in the B-form through the minor groove by forming specific B-bonding. Models could be either right or left-handed B-DNA with a mono or dinucleotide repeat.

By monitoring the 31P signals of free poly(dA-dT) ? poly(dA-dT) and netropsin-poly(dA-dT)? poly(dA-dT) complex we show that the drug changes the DNA structure from essentially a mononucleotide repeat to that of very dominant dinucleotide repeat; however the base- pairing in the DNA-drug complex remain to be Watson-Crick. Whether H-bonding is the specific mode of interaction was judged by monitoring the imino protons of netropsin in the presence of poly(dA-dT) ? poly(dA-dT). This experiment was conducted in 90% H2O + 10% D2O Using the time-shared long pulse. It was found that exchangeable imino protons of netropsin appear in the drug-DNA complex and disappear upon increasing the D2O content; thus confirming that H-bonding is indeed the specific mode of interaction. From these and several NOE measurements, we propose a structure for poly(dA-dT)? poly(dA-dT(-netropsin complex.

In summary, experimental data indicate that netropsin binds to poly(dA-dT)? poly(dA-dT) by forming specific hydrogen bonds and that the binding interaction causes the structure to adopt a Watson-Crick paired dinucleotide repeat motif. The proposed hydrogen bonds can form only if the drug approaches the DNA from the minor groove. Within the NMR time scale the interaction between the ligand and DNA is a fast one. From the NOE experimental data, it appears that poly(dA-dT)? poly(dA-dT) in presence of netropsin exists as an equilibrium mixture of right- and left-handed B-DNA duplexes with a dinucleotide repeat—with a predominance of the left-handed form. The last conclusion is a soft one because it was very difficult to make sure the absence of spin diffusion. In a 400 base pairs long DNA duplex- drug complex (as used in this study), equilibrium between right and left-handed helices can also mean the existence of both helical domains in the same molecule with fast interchange between these domains or/and unhindered motion/propagation of these domains along the helix axis.  相似文献   
72.
Silver ions are widely used as antibacterial agents, but the basic molecular mechanism of this effect is still poorly understood. X-ray absorption near-edge structure (XANES) spectroscopy at the Ag LIII, S K, and P K edges reveals the chemical forms of silver in Staphylococcus aureus and Escherichia coli (Ag+ treated). The Ag LIII-edge XANES spectra of the bacteria are all slightly different and very different from the spectra of silver ions (silver nitrate and silver acetate), which confirms that a reaction occurs. Death or inactivation of bacteria was observed by plate counting and light microscopy. Silver bonding to sulfhydryl groups (Ag-S) in cysteine and Ag-N or Ag-O bonding in histidine, alanine, and dl-aspartic acid was detected by using synthesized silver-amino acids. Significantly lower silver-cysteine content, coupled with higher silver-histidine content, in Gram-positive S. aureus and Listeria monocytogenes cells indicates that the peptidoglycan multilayer could be buffering the biocidal effect of silver on Gram-positive bacteria, at least in part. Bonding of silver to phosphate groups was not detected. Interaction with DNA or proteins can occur through Ag-N bonding. The formation of silver-cysteine can be confirmed for both bacterial cell types, which supports the hypothesis that enzyme-catalyzed reactions and the electron transport chain within the cell are disrupted.  相似文献   
73.
Radiolabeled Arg-Gly-Asp (RGD) peptides are promising agents for non invasive imaging of αvβ3 expression in malignant tumors. The integrin αvβ3 binding affinity and consequent tumor uptake could be improved when a dimeric RGD peptide is used as the targeting moiety instead of a monomer. Towards this, a novel approach was envisaged to synthesize a 99mTc labeled dimeric RGD derivative using a RGD monomer and [99mTcN]+2 intermediate. The dithiocarbamate derivative of cyclic RGD peptide G3-c(RGDfK) (G3 = Gly-Gly-Gly, f = Phe, K = Lys) was synthesized and radiolabeled with [99mTcN]+2 intermediate to form the 99mTcN-[G3-c(RGDfK)]2 complex in high yield (~98%). Biodistribution studies carried out in C57/BL6 mice bearing melanoma tumors showed good tumor uptake [4.61 ± 0.04% IA/g at 30 min post-injection] with fast clearance of the activity from non-target organs/tissue. Scintigraphic imaging studies showed visible accumulation of activity in the tumor with appreciable target to background ratio.  相似文献   
74.
RNA is an extremely important target for the development of chemical probes of function or small molecule therapeutics. Aminoglycosides are the most well studied class of small molecules to target RNA. However, the RNA motifs outside of the bacterial rRNA A-site that are likely to be bound by these compounds in biological systems is largely unknown. If such information were known, it could allow for aminoglycosides to be exploited to target other RNAs and, in addition, could provide invaluable insights into potential bystander targets of these clinically used drugs. We utilized two-dimensional combinatorial screening (2DCS), a library-versus-library screening approach, to select the motifs displayed in a 3 × 3 nucleotide internal loop library and in a 6-nucleotide hairpin library that bind with high affinity and selectivity to six aminoglycoside derivatives. The selected RNA motifs were then analyzed using structure–activity relationships through sequencing (StARTS), a statistical approach that defines the privileged RNA motif space that binds a small molecule. StARTS allowed for the facile annotation of the selected RNA motif–aminoglycoside interactions in terms of affinity and selectivity. The interactions selected by 2DCS generally have nanomolar affinities, which is higher affinity than the binding of aminoglycosides to a mimic of their therapeutic target, the bacterial rRNA A-site.  相似文献   
75.
A novel group of 1,4-diaryl-substituted triazoles was designed and synthesized by introducing the cyclooxygenase-2 (COX-2) pharmacophore SO2NH2 attached to one aryl ring and various substituents (H, F, Cl, CH3 or OCH3) attached to the other aryl ring. The effects of size and flexibility of the compounds upon COX-1/COX-2 inhibitory potency and selectivity was studied by increasing the size of an alkyl linker chain [(–CH2)n, where n = 0, 1, 2]. In vitro COX-1/COX-2 inhibition studies showed that all compounds (1418, 2125 and 2832) are more potent inhibitors of COX-2 isozyme (IC50 = 0.17–28.0 μM range) compared to COX-1 isozyme (IC50 = 21.0 to >100 μM range). Within the group of 1,4 diaryl-substituted triazoles, 4-{2-[4-(4-chloro-phenyl)-[1,2,3]triazol-1-yl]-ethyl}-benzenesulfonamide (compound 30) displayed highest COX-2 inhibitory potency and selectivity (COX-1: IC50 = >100 μM, COX-2: IC50 = 0.17 μM, SI >588). Molecular docking studies using the catalytic site of COX-1 and COX-2, respectively, provided complementary theoretical support for the obtained experimental biological structure–activity relationship data. Results of molecular docking studies revealed that COX-2 pharmacophore SO2NH2 in compound 30 is positioned in the secondary pocket of COX-2 active site; with the nitrogen atom of the SO2NH2 group being hydrogen bonded to Q192 (N?OC = 2.85 Å), and one of the oxygen atoms of SO2NH2 group forming a hydrogen bond to H90 (SO?N = 2.38 Å).  相似文献   
76.

Background

In 2011, World Health Organization revised its recommendation for microbiological monitoring during treatment for multidrug-resistant tuberculosis (MDR-TB) by increasing the frequency of culture examination from quarterly to monthly after culture conversion. Implementing the recommendation requires substantial additional investment in laboratory infrastructure. The objective of this review is to provide cost evidence that is needed for national TB programs to budget for optimal monitoring strategies.

Methods and Findings

We conducted the first systematic literature review on unit cost estimates of three monitoring strategies: 1) smear only; 2) culture only; 3) combined smear and culture. 26 peer-reviewed studies were selected by searching 10 databases in English and Chinese for literature published between 1995 and 2012. Cost estimates were converted into 2010 constant USD and international dollars. We assessed the quality of the estimates using a matrix with five essential elements and provided a cost projection for the combined smear and culture tests where the data were available. The 26 studies reported the cost estimates in 16 predominantly high- or middle-income countries from 1993 to 2009. The estimated unit cost for smear, culture, and combined tests ranges from $0.26 to $10.50, $1.63 to $62.01, and $26.73 to $39.57, respectively. The ratio of culture to smear costs varies from 1.35 to 11.98. The wide range of estimates is likely attributable to using different laboratory methods in different regions and years and differing practices in collecting and reporting cost data. Most studies did not report information critical for generalizing their conclusions.

Conclusion

The paucity and low quality of unit cost estimates for TB monitoring in resource-poor settings impose technical challenges in predicting the resources needed for strengthening microbiological monitoring. To improve the validity and comparability of the cost data, we strongly advocate the data collection, estimation, and reporting follow protocols proposed by WHO.  相似文献   
77.
Staphylococcus aureus is a major human pathogen, first recognized as a leading cause of hospital-acquired infections. Community-associated S. aureus (CA-SA) pose a greater threat due to increase in severity of infection and disease among children and healthy adults. CA-SA strains in India are genetically diverse, among which is the sequence type (ST) 772, which has now spread to Australia, Europe and Japan. Towards understanding the genetic characteristics of ST772, we obtained draft genome sequences of five relevant clinical isolates and studied the properties of their PVL-carrying prophages, whose presence is a defining hallmark of CA-SA. We show that this is a novel prophage, which carries the structural genes of the hlb-carrying prophage and includes the sea enterotoxin. This architecture probably emerged early within the ST772 lineage, at least in India. The sea gene, unique to ST772 PVL, despite having promoter sequence characteristics typical of low expression, appears to be highly expressed during early phase of growth in laboratory conditions. We speculate that this might be a consequence of its novel sequence context. The crippled nature of the hlb-converting prophage in ST772 suggests that widespread mobility of the sea enterotoxin might be a selective force behind its ‘transfer’ to the PVL prophage. Wild type ST772 strains induced strong proliferative responses as well as high cytotoxic activity against neutrophils, likely mediated by superantigen SEA and the PVL toxin respectively. Both proliferation and cytotoxicity were markedly reduced in a cured ST772 strain indicating the impact of the phage on virulence. The presence of SEA alongside the genes for the immune system-modulating PVL toxin may contribute to the success and virulence of ST772.  相似文献   
78.

Background and Purpose

The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β) regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer.

Methods

Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined.

Results

Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2) and decreased phosphorylation of focal adhesion kinase (FAK). The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts.

Conclusion

The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer.  相似文献   
79.
80.
In this work, an optofluidic flow analyzer, which can be used to perform malaria diagnosis at the point‐of‐care is demonstrated. The presented technique is based on quantitative optical absorption measurements carried out on a single cell level for a given population of Human Red Blood Cells (RBCs). By measuring the optical absorption of each RBC, the decrease in the Hemoglobin (Hb) concentration in the cytoplasm of the cell due to the invasion of malarial parasite is detected. Cells are assessed on a single cell basis, as they pass through a microfluidic channel. The proposed technique has been implemented with inexpensive off‐the‐shelf components like laser diode, photo‐detector and a micro‐controller. The ability of the optofluidic flow analyzer to asses about 308,049 cells within 3 minutes has been demonstrated. The presented technique is capable of detecting very low parasitemia levels with high sensitivity.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号