首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   40篇
  国内免费   1篇
  2023年   6篇
  2022年   13篇
  2021年   26篇
  2020年   13篇
  2019年   15篇
  2018年   16篇
  2017年   14篇
  2016年   21篇
  2015年   31篇
  2014年   40篇
  2013年   49篇
  2012年   54篇
  2011年   30篇
  2010年   18篇
  2009年   20篇
  2008年   21篇
  2007年   24篇
  2006年   23篇
  2005年   12篇
  2004年   10篇
  2003年   7篇
  2002年   11篇
  2001年   6篇
  2000年   9篇
  1999年   9篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   7篇
  1986年   4篇
  1985年   4篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1972年   5篇
  1969年   2篇
  1959年   1篇
  1874年   1篇
排序方式: 共有581条查询结果,搜索用时 31 毫秒
21.
Deletion of DNA polymerase eta (Rad30/Polη) in pathogenic yeast Candida albicans is known to reduce filamentation induced by serum, ultraviolet, and cisplatin. Because nonfilamentous C. albicans is widely accepted as avirulent form, here we explored the virulence and pathogenicity of a rad30Δ strain of C. albicans in cell‐based and animal systems. Flow cytometry of cocultured fungal and differentiated macrophage cells revealed that comparatively higher percentage of macrophages was associated with the wild‐type than rad30Δ cells. In contrast, higher number of Polη‐deficient C. albicans adhered per macrophage membrane. Imaging flow cytometry showed that the wild‐type C. albicans developed hyphae after phagocytosis that caused necrotic death of macrophages to evade their clearance. Conversely, phagosomes kill the fungal cells as estimated by increased metacaspase activity in wild‐type C. albicans. Despite the morphological differences, both wild‐type and rad30? C. albicans were virulent with a varying degree of pathogenicity in mice models. Notably, mice with Th1 immunity were comparatively less susceptible to systemic fungal infection than Th2 type. Thus, our study clearly suggests that the modes of interaction of morphologically different C. albicans strains with the host immune cells are diverged, and host genetic background and several other attributing factors of the fungus could additionally determine their virulence.  相似文献   
22.
Deep terrestrial subsurface represents a huge repository of global prokaryotic biomass. Given its vastness and importance, microbial life within the deep subsurface continental crust remains under-represented in global studies. We characterize the microbial communities of deep, extreme and oligotrophic realm hosted by crystalline Archaean granitic rocks underneath the Deccan Traps, through sampling via 3000 m deep scientific borehole at Koyna, India through metagenomics, amplicon sequencing and cultivation-based analyses. Gene sequences 16S rRNA (7.37 × 106) show considerable bacterial diversity and the existence of a core microbiome (5724 operational taxonomic units conserved out of a total 118,064 OTUs) across the depths. Relative abundance of different taxa of core microbiome varies with depth in response to prevailing lithology and geochemistry. Co-occurrence network analysis and cultivation attempt to elucidate close interactions among autotrophic and organotrophic bacteria. Shotgun metagenomics reveals a major role of autotrophic carbon fixation via the Wood–Ljungdahl pathway and genes responsible for energy and carbon metabolism. Deeper analysis suggests the existence of an ‘acetate switch’, coordinating biosynthesis and cellular homeostasis. We conclude that the microbial life in the nutrient- and energy-limited deep granitic crust is constrained by the depth and managed by a few core members via a close interplay between autotrophy and organotrophy.  相似文献   
23.
Inteins are auto-processing domains that implement a multistep biochemical reaction termed protein splicing, marked by cleavage and formation of peptide bonds. They excise from a precursor protein, generating a functional protein via covalent bonding of flanking exteins. We report the kinetic study of splicing and cleavage reaction in [Fe–S] cluster assembly protein SufB from Mycobacterium tuberculosis (Mtu). Although it follows a canonical intein splicing pathway, distinct features are added by extein residues present in the active site. Sequence analysis identified two conserved histidines in the N-extein region; His-5 and His-38. Kinetic analyses of His-5Ala and His-38Ala SufB mutants exhibited significant reductions in splicing and cleavage rates relative to the SufB wildtype (WT) precursor protein. Structural analysis and molecular dynamics (MD) simulations suggested that Mtu SufB displays a unique mechanism where two remote histidines work concurrently to facilitate N-terminal cleavage reaction. His-38 is stabilized by the solvent-exposed His-5, and can impact N–S acyl shift by direct interaction with the catalytic Cys1. Development of inteins as biotechnological tools or as pathogen-specific novel antimicrobial targets requires a more complete understanding of such unexpected roles of conserved extein residues in protein splicing.  相似文献   
24.
A number of thiazolidine-2,4-diones derivatives having carboxylic ester appendage at N-3 were synthesized and their antihyperglycemic activity was evaluated. Many of these derivatives as well as their corresponding carboxylic acid showed significant improvement on post-prandial hyperglycemia in normal rats, in contrast to their poor agonist activity at PPARgamma.  相似文献   
25.
26.
Viral mimicry of the complement system   总被引:4,自引:0,他引:4  
The complement system is a potent innate immune mechanism consisting of cascades of proteins which are designed to fight against and annul intrusion of all the foreign pathogens. Although viruses are smaller in size and have relatively simple structure, they are not immune to complement attack. Thus, activation of the complement system can lead to neutralization of cell-free viruses, phagocytosis of C3b-coated viral particles, lysis of virus-infected cells, and generation of inflammatory and specific immune responses. However, to combat host responses and succeed as pathogens, viruses not only have developed/adopted mechanisms to control complement, but also have turned these interactions to their own advantage. Important examples include poxviruses, herpesviruses, retroviruses, paramyxoviruses and picornaviruses. In this review, we provide information on the various complement evasion strategies that viruses have developed to thwart the complement attack of the host. A special emphasis is given on the interactions between the viral proteins that are involved in molecular mimicry and the complement system.  相似文献   
27.
Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40°C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D {1H}-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear {1H}-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (m) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motions cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme action.  相似文献   
28.
A novel automated approach for the sequence specific NMR assignments of 1HN, 13C, 13C, 13C/1H and 15N spins in proteins, using triple resonance experimental data, is presented. The algorithm, TATAPRO (Tracked AuTomated Assignments in Proteins) utilizes the protein primary sequence and peak lists from a set of triple resonance spectra which correlate 1HN and 15N chemical shifts with those of 13C, 13C and 13C/1H. The information derived from such correlations is used to create a `master_list' consisting of all possible sets of 1HN i, 15Ni, 13C i, 13C i, 13Ci/1H i, 13C i–1, 13C i–1 and 13Ci–1/ 1H i–1 chemical shifts. On the basis of an extensive statistical analysis of 13C and 13C chemical shift data of proteins derived from the BioMagResBank (BMRB), it is shown that the 20 amino acid residues can be grouped into eight distinct categories, each of which is assigned a unique two-digit code. Such a code is used to tag individual sets of chemical shifts in the master_list and also to translate the protein primary sequence into an array called pps_array. The program then uses the master_list to search for neighbouring partners of a given amino acid residue along the polypeptide chain and sequentially assigns a maximum possible stretch of residues on either side. While doing so, each assigned residue is tracked in an array called assig_array, with the two-digit code assigned earlier. The assig_array is then mapped onto the pps_array for sequence specific resonance assignment. The program has been tested using experimental data on a calcium binding protein from Entamoeba histolytica (Eh-CaBP, 15 kDa) having substantial internal sequence homology and using published data on four other proteins in the molecular weight range of 18–42 kDa. In all the cases, nearly complete sequence specific resonance assignments (> 95%) are obtained. Furthermore, the reliability of the program has been tested by deleting sets of chemical shifts randomly from the master_list created for the test proteins.  相似文献   
29.
A europium (Eu)‐doped di‐calcium magnesium di‐silicate phosphor, Ca2MgSi2O7:Eu2+, was prepared using a solid‐state reaction method. The phase structure, particle size, surface morphology, elemental analysis, different stretching mode and luminescence properties were analyzed by X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) with energy dispersive X‐ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, photoluminescence (PL) and mechanoluminescence (ML). The phase structure of Ca2MgSi2O7:Eu2+ was an akermanite‐type structure, which belongs to the tetragonal crystallography with space group P4?21m; this structure is a member of the melilite group and forms a layered compound. The surface of the prepared phosphor was not found to be uniform and particle distribution was in the nanometer range. EDX and FTIR confirm the components of Eu2+‐doped Ca2MgSi2O7 phosphor. Under UV excitation, the main emission peak appeared at 530 nm, belonging to the broad emission ascribed to the 4f65d1→4f7 transition of Eu2+. The ML intensity of the prepared phosphor increased linearly with increasing impact velocity. A CIE color chromaticity diagram and ML spectrum confirmed that the prepared Ca2MgSi2O7:Eu2+ phosphor would emit green color and the ML spectrum was similar to that of PL, which indicated that ML is emitted from the same center of Eu2+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
30.

Background

Coronary Artery Disease (CAD) is clearly a multifactorial disease that develops from childhood and ultimately leads to death. Several reports revealed having a First Degree Relatives (FDRS) with premature CAD is a significant autonomous risk factor for CAD development. C - reactive protein (CRP) is a member of the pentraxin family and is the most widely studied proinflammatory biomarker. IL-18 is a pleiotrophic and proinflammatory cytokine which is produced mainly by macrophages and plays an important role in the inflammatory cascade.

Methods and Results

Hs-CRP levels were estimated by ELISA and Genotyping of IL-18 gene variant located on promoter -137 (G/C) by Allele specific PCR in blood samples of 300 CAD patients and 300 controls and 100 FDRS. Promoter Binding sites and Protein interacting partners were identified by Alibaba 2.1 and Genemania online tools respectively. Hs-CRP levels were significantly high in CAD patients followed by FDRS when compared to controls. In IL-18 -137 (G/C) polymorphism homozygous GG is significantly associated with occurrence of CAD and Hs-CRP levels were significantly higher in GG genotype subjects when compared to GC and CC. IL-18 was found to be interacting with 100 protein interactants.

Conclusion

Our results indicate that Hs-CRP levels and IL-18-137(G/C) polymorphism may help to identify risk of future events of CAD in asymptomatic healthy FDRS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号