排序方式: 共有76条查询结果,搜索用时 15 毫秒
61.
DNA cloning and protein engineering are basic methodologies employed for various applications in all life-science disciplines. Manipulations of DNA however, could be a lengthy process that slows down subsequent experiments. To facilitate both DNA cloning and protein engineering, we present Transfer-PCR (TPCR), a novel approach that integrates in a single tube, PCR amplification of the target DNA from an origin vector and its subsequent integration into the destination vector. TPCR can be applied for incorporation of DNA fragments into any desired position within a circular plasmid without the need for purification of the intermediate PCR product and without the use of any commercial kit. Using several examples, we demonstrate the applicability of the TPCR platform for both DNA cloning and for multiple-site targeted mutagenesis. In both cases, we show that the TPCR reaction is most efficient within a narrow range of primer concentrations. In mutagenesis, TPCR is primarily advantageous for generation of combinatorial libraries of targeted mutants but could be also applied to generation of variants with specific multiple mutations throughout the target gene. Adaptation of the TPCR platform should facilitate, simplify and significantly reduce time and costs for diverse protein structure and functional studies. 相似文献
62.
Computational prediction of stabilizing mutations into monomeric proteins has become an almost ordinary task. Yet, computational stabilization of protein–protein complexes remains a challenge. Design of protein–protein interactions (PPIs) is impeded by the absence of an energy function that could reliably reproduce all favorable interactions between the binding partners. In this work, we present three energy functions: one function that was trained on monomeric proteins, while the other two were optimized by different techniques to predict side-chain conformations in a dataset of PPIs. The performances of these energy functions are evaluated in three different tasks related to design of PPIs: predicting side-chain conformations in PPIs, recovering native binding-interface sequences, and predicting changes in free energy of binding due to mutations. Our findings show that both functions optimized on side-chain repacking in PPIs are more suitable for PPI design compared to the function trained on monomeric proteins. Yet, no function performs best at all three tasks. Comparison of the three energy functions and their performances revealed that (1) burial of polar atoms should not be penalized significantly in PPI design as in single-protein design and (2) contribution of electrostatic interactions should be increased several-fold when switching from single-protein to PPI design. In addition, the use of a softer van der Waals potential is beneficial in cases when backbone flexibility is important. All things considered, we define an energy function that captures most of the nuances of the binding energetics and hence, should be used in future for design of PPIs. 相似文献
63.
64.
Muller JM Shorter J Newman R Deinhardt K Sagiv Y Elazar Z Warren G Shima DT 《The Journal of cell biology》2002,157(7):1161-1173
Characterization of mammalian NSF (G274E) and Drosophila NSF (comatose) mutants revealed an evolutionarily conserved NSF activity distinct from ATPase-dependent SNARE disassembly that was essential for Golgi membrane fusion. Analysis of mammalian NSF function during cell-free assembly of Golgi cisternae from mitotic Golgi fragments revealed that NSF disassembles Golgi SNAREs during mitotic Golgi fragmentation. A subsequent ATPase-independent NSF activity restricted to the reassembly phase is essential for membrane fusion. NSF/alpha-SNAP catalyze the binding of GATE-16 to GOS-28, a Golgi v-SNARE, in a manner that requires ATP but not ATP hydrolysis. GATE-16 is essential for NSF-driven Golgi reassembly and precludes GOS-28 from binding to its cognate t-SNARE, syntaxin-5. We suggest that this occurs at the inception of Golgi reassembly to protect the v-SNARE and regulate SNARE function. 相似文献
65.
Chen Yamin Offer Amir Moran Sagiv Eric Attias Yoav Meckel Nir Eynon Michael Sagiv Ruthie E Amir 《Journal of applied physiology》2007,103(6):2057-2061
Unaccustomed exercise may cause muscle breakdown with marked increase in serum creatine kinase (CK) activity. The skeletal muscle renin-angiotensin system (RAS) plays an important role in exercise metabolism and tissue injury. A functional insertion (I)/deletion (D) polymorphism in the angiotensin I-converting enzyme (ACE) gene (rs4646994) has been associated with ACE activity. We hypothesized that ACE ID genotype may contribute to the wide variability in individuals' CK response to a given exercise. Young individuals performed maximal eccentric contractions of the elbow flexor muscles. Pre- and postexercise CK activity was determined. ACE genotype was significantly associated with postexercise CK increase and peak CK activity. Individuals harboring one or more of the I allele had a greater increase and higher peak CK values than individuals with the DD genotype. This response was dose-dependent (mean +/- SE U/L: II, 8,882 +/- 2,362; ID, 4,454 +/- 1,105; DD, 2,937 +/- 753, ANOVA, P = 0.02; P = 0.009 for linear trend). Multivariate stepwise regression analysis, which included age, sex, body mass index, and genotype subtypes, revealed that ACE genotype was the most powerful independent determinant of peak CK activity (adjusted odds ratio 1.3, 95% confidence interval 1.03-1.64, P = 0.02). In conclusion, we indicate a positive association of the ACE ID genotype with CK response to strenuous exercise. We suggest that the II genotype imposes increased risk for developing muscle damage, whereas the DD genotype may have protective effects. These findings support the role of local RAS in the regulation of exertional muscle injury. 相似文献
66.
Strategies for mapping and cloning quantitative trait genes in rodents 总被引:11,自引:0,他引:11
Over the past 15 years, more than 2,000 quantitative trait loci (QTLs) have been identified in crosses between inbred strains of mice and rats, but less than 1% have been characterized at a molecular level. However, new resources, such as chromosome substitution strains and the proposed Collaborative Cross, together with new analytical tools, including probabilistic ancestral haplotype reconstruction in outbred mice, Yin-Yang crosses and in silico analysis of sequence variants in many inbred strains, could make QTL cloning tractable. We review the potential of these strategies to identify genes that underlie QTLs in rodents. 相似文献
67.
68.
Antón Barreiro-Iglesias Guixin Zhang Michael E. Selzer Michael I. Shifman 《Journal of visualized experiments : JoVE》2014,(92)
After a complete spinal cord injury, sea lampreys at first are paralyzed below the level of transection. However, they recover locomotion after several weeks, and this is accompanied by short distance regeneration (a few mm) of propriospinal axons and spinal-projecting axons from the brainstem. Among the 36 large identifiable spinal-projecting neurons, some are good regenerators and others are bad regenerators. These neurons can most easily be identified in wholemount CNS preparations. In order to understand the neuron-intrinsic mechanisms that favor or inhibit axon regeneration after injury in the vertebrates CNS, we determine differences in gene expression between the good and bad regenerators, and how expression is influenced by spinal cord transection. This paper illustrates the techniques for housing larval and recently transformed adult sea lampreys in fresh water tanks, producing complete spinal cord transections under microscopic vision, and preparing brain and spinal cord wholemounts for in situ hybridization. Briefly, animals are kept at 16 °C and anesthetized in 1% Benzocaine in lamprey Ringer. The spinal cord is transected with iridectomy scissors via a dorsal approach and the animal is allowed to recover in fresh water tanks at 23 °C. For in situ hybridization, animals are reanesthetized and the brain and cord removed via a dorsal approach. 相似文献
69.
Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF 总被引:20,自引:0,他引:20
Ries S Biederer C Woods D Shifman O Shirasawa S Sasazuki T McMahon M Oren M McCormick F 《Cell》2000,103(2):321-330
Mdm2 acts as a major regulator of the tumor suppressor p53 by targeting its destruction. Here, we show that the mdm2 gene is also regulated by the Ras-driven Raf/MEK/MAP kinase pathway, in a p53-independent manner. Mdm2 induced by activated Raf degrades p53 in the absence of the Mdm2 inhibitor p19ARF. This regulatory pathway accounts for the observation that cells transformed by oncogenic Ras are more resistant to p53-dependent apoptosis following exposure to DNA damage. Activation of the Ras-induced Raf/MEK/MAP kinase may therefore play a key role in suppressing p53 during tumor development and treatment. In primary cells, Raf also activates the Mdm2 inhibitor p19ARF. Levels of p53 are therefore determined by opposing effects of Raf-induced p19ARF and Mdm2. 相似文献
70.
Hepatocyte receptors for antithrombin III-proteinase complexes 总被引:3,自引:0,他引:3
H E Fuchs M A Shifman G Michalopoulos S V Pizzo 《Journal of cellular biochemistry》1984,24(3):197-206
The in vivo clearance of antithrombin III-proteinase complexes occurs via a specific and saturable pathway located on hepatocytes. We now report studies of the catabolism of antithrombin III-proteinase complexes in vitro using rat hepatocytes in primary culture. Antithrombin III-thrombin and trypsin complexes were prepared and purified to homogeneity. Ligand uptake by hepatocytes was concentration, temperature, and time dependent. Initial rate studies were performed to characterize the maximum rate of uptake, V, and apparent Michaelis constant Kapp. These studies yielded a V of 12.8 fmol/mg cell protein/min and a Kapp of 144 nM for antithrombin-trypsin complexes. Competition experiments with antithrombin III, antithrombin III-proteinase complexes, alpha 2-macroglobulin-methylamine, asialoorosomucoid and the neoglycoproteins, fucosyl-bovine serum albumin (BSA), N-acetylglucosaminyl-BSA, and mannosyl-BSA indicated that only antithrombin III-proteinase complexes were recognized by the hepatocyte receptor. Uptake studies were performed at 37 degrees C with 125I-antithrombin III-trypsin and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in conjunction with autoradiography. These studies demonstrate time-dependent uptake and degradation of the ligand to low molecular weight peptides. In addition, there was a time-dependent accumulation of a high molecular weight complex of ligand and a cellular protein. This complex disappeared when gels were performed under reducing conditions. 相似文献