首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   26篇
  国内免费   2篇
  203篇
  2021年   2篇
  2020年   2篇
  2018年   6篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   8篇
  2012年   15篇
  2011年   12篇
  2010年   6篇
  2009年   8篇
  2008年   5篇
  2007年   2篇
  2006年   8篇
  2005年   10篇
  2004年   4篇
  2003年   3篇
  2002年   8篇
  2000年   4篇
  1999年   5篇
  1998年   7篇
  1997年   2篇
  1996年   2篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1988年   4篇
  1987年   3篇
  1986年   7篇
  1985年   4篇
  1984年   3篇
  1983年   6篇
  1982年   1篇
  1981年   3篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   3篇
  1973年   3篇
  1971年   1篇
  1970年   1篇
  1967年   2篇
  1966年   2篇
  1962年   1篇
  1961年   2篇
  1957年   2篇
  1955年   1篇
  1951年   1篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
31.

Introduction

In rheumatoid arthritis (RA), synovial fluid (SF) contains a large number of neutrophils that contribute to the inflammation and destruction of the joints. The SF also contains granulocyte-macrophage colony-stimulating factor (GM-CSF), which sustains viability of neutrophils and activates their functions. Using proteomic surveillance, we here tried to elucidate the effects of GM-CSF on neutrophils.

Methods

Neutrophils stimulated by GM-CSF were divided into four subcellular fractions: cytosol, membrane/organelle, nuclei, and cytoskeleton. Then, proteins were extracted from each fraction and digested by trypsin. The produced peptides were detected using matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF MS).

Results

We detected 33 peptide peaks whose expression was upregulated by more than 2.5-fold in GM-CSF stimulated neutrophils and identified 11 proteins out of the 33 peptides using MALDI-TOF/TOF MS analysis and protein database searches. One of the identified proteins was neutrophil gelatinase-associated lipocalin (NGAL). We confirmed that the level of NGAL in SF was significantly higher in patients with RA than in those with osteoarthritis. We next addressed possible roles of the increased NGAL in RA. We analysed proteome alteration of synoviocytes from patients with RA by treatment with NGAL in vitro. We found that, out of the detected protein spots (approximately 3,600 protein spots), the intensity of 21 protein spots increased by more than 1.5-fold and the intensity of 10 protein spots decreased by less than 1 to 1.5-fold as a result of the NGAL treatment. Among the 21 increased protein spots, we identified 9 proteins including transitional endoplasmic reticulum ATPase (TERA), cathepsin D, and transglutaminase 2 (TG2), which increased to 4.8-fold, 1.5-fold and 1.6-fold, respectively. Two-dimensional electrophoresis followed by western blot analysis confirmed the upregulation of TERA by the NGAL treatment and, moreover, the western blot analysis showed that the NGAL treatment changed the protein spots caused by post-translational modification of TERA. Furthermore, NGAL cancelled out the proliferative effects of fibroblast growth factor (FGF)-2 and epidermal growth factor (EGF) on chondrocytes from a patient with RA and proliferative effect of FGF-2 on chondrosarcoma cells.

Conclusions

Our results indicate that GM-CSF contributes to the pathogenesis of RA through upregulation of NGAL in neutrophils, followed by induction of TERA, cathepsin D and TG2 in synoviocytes. NGAL and the upregulated enzymes may therefore play an important role in RA.  相似文献   
32.
The components and subprocesses underlying the formation of COPI-coated vesicles at the Golgi are well understood. The coating cascade is initiated after the small GTPase Arf1 is activated by the Sec7 domain–containing guanine nucleotide exchange factor GBF1 (Golgi brefeldin A resistant guanine nucleotide exchange factor 1). This causes a conformational shift within Arf1 that facilitates stable association of Arf1 with the membrane, a process required for subsequent recruitment of the COPI coat. Although we have atomic-level knowledge of Arf1 activation by Sec7 domain–containing GEFs, our understanding of the biophysical processes regulating Arf1 and GBF1 dynamics is limited. We used fluorescence recovery after photobleaching data and kinetic Monte Carlo simulation to assess the behavior of Arf1 and GBF1 during COPI vesicle formation in live cells. Our analyses suggest that Arf1 and GBF1 associate with Golgi membranes independently, with an excess of GBF1 relative to Arf1. Furthermore, the GBF1-mediated Arf1 activation is much faster than GBF1 cycling on/off the membrane, suggesting that GBF1 is regulated by processes other than its interactions Arf1. Interestingly, modeling the behavior of the catalytically inactive GBF1/E794K mutant stabilized on the membrane is inconsistent with the formation of a stable complex between it and an endogenous Arf1 and suggests that GBF1/E794K is stabilized on the membrane independently of complex formation.  相似文献   
33.
The human ATP-binding cassette (ABC) transporters ABCB1, ABCC4 and ABCC5 are involved in resistance to chemotherapeutic agents. Here we present molecular models of ABCB1, ABCC4 and ABCC5 by homology based on a wide open inward-facing conformation of Escherichia coli MsbA, which were constructed in order to elucidate differences in the electrostatic and molecular features of their drug recognition conformations. As a quality assurance of the methodology, the ABCB1 model was compared to an ABCB1 X-ray crystal structure, and with published cross-linking and site directed mutagenesis data of ABCB1. Amino acids Ile306 (TMH5), Ile340 (TMH6), Phe343 (TMH6), Phe728 (TMH7), and Val982 (TMH12), form a putative substrate recognition site in the ABCB1 model, which is confirmed by both the ABCB1 X-ray crystal structure and the site-directed mutagenesis studies. The ABCB1, ABCC4 and ABCC5 models display distinct differences in the electrostatic properties of their drug recognition sites.  相似文献   
34.
35.
The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust assay designs and high throughput work-flows. Based on their small size, tissue transparency and ease of cultivation, the use of C. elegans should obviate many of the technical impediments associated with live animal drug screening. Moreover, their genetic tractability and accomplished record for providing insights into the molecular and cellular basis of human disease, should make C. elegans an ideal model system for in vivo drug discovery campaigns. The goal of this study was to determine whether C. elegans could be adapted to high-throughput and high-content drug screening strategies analogous to those developed for cell-based systems. Using transgenic animals expressing fluorescently-tagged proteins, we first developed a high-quality, high-throughput work-flow utilizing an automated fluorescence microscopy platform with integrated image acquisition and data analysis modules to qualitatively assess different biological processes including, growth, tissue development, cell viability and autophagy. We next adapted this technology to conduct a small molecule screen and identified compounds that altered the intracellular accumulation of the human aggregation prone mutant that causes liver disease in α1-antitrypsin deficiency. This study provides powerful validation for advancement in preclinical drug discovery campaigns by screening live C. elegans modeling α1-antitrypsin deficiency and other complex disease phenotypes on high-content imaging platforms.  相似文献   
36.
[35S]Sulfate incorporation was measured in populations of Chinese hamster ovary cells enriched for mitotics, early G1 cells, and interphase monolayers or suspensions. Incorporation was determined by biochemical analysis of extracts and quantitative autoradiography of thick sections. 90% of [35S]sulfate was incorporated into glycosaminoglycan (GAG). Incorporation was depressed fourfold in mitotics and stimulated by from two- to three-fold in early G1 cells relative to mixed interphase cells. GAG synthesis was maintained into late G2. Thus, the rate of GAG biosynthesis was correlated temporally with the detachment and reattachment of cells to substrate. Inhibitors of protein synthesis brought about the rapid arrest of GAG biosynthesis. However, xylosides, which bypass the requirement for core protein, did not bring oligosaccharide sulfation in mitotics to interphase levels. These observations indicate an inhibition of Golgi processing and are consistent with a generalized defect of membrane vesicle-mediated transport during mitosis.  相似文献   
37.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   
38.
人类端粒酶启动子(hTERT启动子)在肿瘤基因治疗中的有效性已经得到了证实. 然而,hTERT启动子有限的肿瘤靶向转录活性困扰着它的临床应用.早期研究已经揭示,核心hTERT启动子上的-34位E-box元件与该启动子的肿瘤靶向转录活性有关.为进一步探索核心hTERT启动子序列3′端富余E-box元件是否能提高启动子的肿瘤靶向转录能力,用化学合成方法在野生型hTERT(WT-hTERT)核心启动子片段(编码蛋白起始子ATG上游-268 bp~-10 bp)的3′端接入3个E-box序列, 构建成修饰型hTERT(Mod-hTERT)启动子. 然后,分别用WT-hTERT和Mod-hTERT启动子去调控增强型绿色荧光蛋白(EGFP)及荧光素酶报告基因在293FT、HepGⅡ、SGC7901、U2OS、以及原代培养人成纤维细胞(PHF)中表达. 结果表明, 在Mod-hTERT启动子的各实验组细胞中,能够在端粒酶阳性的293FT、HepGⅡ及 SGC7901细胞组中观测到EGFP的表达,而在端粒酶阴性的U2OS及PHF细胞组中没有观测到EGFP的表达;在端粒酶阳性的293FT、HepGⅡ和SGC7901细胞株中,Mod-hTERT启动子调控下的荧光素酶活性要高于WT-hTERT启动子组(P<0.01); 而在端粒酶阴性的U2OS细胞组中,Mod-hTERT启动子调控下的荧光素酶活性则低于WT-hTERT启动子组(P<0.01); 在PHF细胞组中,Mod-hTERT启动子组与WT-hTERT启动子组的荧光素酶活性差异不显著(P>0.05).研究提示,在3′端增加E-box元件可以提高核心hTERT启动子序列的肿瘤靶向转录活性.  相似文献   
39.
Laboratory rats are small animal models which are often used for scientific investigations in medicine. So far there are only few scientific data about the meaning of these small animal models for in vivo bone healing studies available in literature. Although the rat's femur with its cyclic loadings during gait is an appropriate model for investigations in the field of experimental orthopaedics and traumatology there is a lack of morphometric information with respect to its anatomy. The aim of this study is to evaluate the anatomy of rat femurs in two species, which are often performed in animal experimental medicine. These morphometric data should contribute to develope an appropriated osseous fragment fixation system in the rat's femur. The femurs of Wistar (WR) and Sprague Dawley (SDR) cadavers were prepared and analysed by x-rays in two standard planes. The results were compared with the corresponding data for humans by literature. It could be demonstrated that SDR showed a higher caput-collum-diaphyseal and antetorsion angle, but a lower transcondylar femur valgus angle compared to WR. Cortical thickness, bone marrow cavity diameter and femur length were higher in WR. Wistar rat's femur anatomy shows more similarities to human anatomy than Sprague Dawley rats.  相似文献   
40.
Several unique aspects of mitotic spindle formation have been revealed by investigation of an autoantibody present in the serum of a patient with the CREST (calcinosis, Raynaud's phenomenon, esophageal dysmotility, schlerodacytyly, and telangiectasias) syndrome. This antibody was previously shown to label at the spindle poles of metaphase and anaphase cells and to be absent from interphase cells. We show here that the serum stained discrete cytoplasmic foci in early prophase cells and only later localized to the spindle poles. The cytoplasmic distribution of the antigen was also seen in nocodazole-arrested cells and prophase cells in populations treated with taxol. In normal and taxol-treated cells, the microtubules appeared to emanate from the cytoplasmic foci and polar stain, and in cells released from nocodazole block, microtubules regrew from antigen-containing centers. This characteristic distribution suggests that the antigen is part of a microtubule organizing center. Thus, we propose that a prophase originating polar antigen functions in spindle pole organization as a coalescing microtubule organizing center that is present only during mitosis. Characterization of the serum showed reactions with multiple proteins at 115, 110, 50, 36, 30, and 28 kD. However, affinity-eluted antibody from the 115/110-kD bands was shown to specifically label the spindle pole and cytosolic foci in prophase cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号