首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1656篇
  免费   125篇
  国内免费   1篇
  2023年   12篇
  2022年   33篇
  2021年   49篇
  2020年   38篇
  2019年   33篇
  2018年   44篇
  2017年   41篇
  2016年   53篇
  2015年   66篇
  2014年   92篇
  2013年   118篇
  2012年   129篇
  2011年   140篇
  2010年   78篇
  2009年   64篇
  2008年   72篇
  2007年   71篇
  2006年   56篇
  2005年   67篇
  2004年   48篇
  2003年   43篇
  2002年   33篇
  2001年   30篇
  2000年   23篇
  1999年   27篇
  1998年   11篇
  1996年   10篇
  1994年   9篇
  1992年   19篇
  1991年   10篇
  1990年   14篇
  1989年   13篇
  1988年   17篇
  1987年   10篇
  1986年   12篇
  1985年   8篇
  1984年   12篇
  1983年   8篇
  1982年   10篇
  1981年   9篇
  1980年   10篇
  1979年   14篇
  1978年   12篇
  1977年   9篇
  1976年   9篇
  1975年   12篇
  1974年   9篇
  1973年   11篇
  1972年   7篇
  1969年   7篇
排序方式: 共有1782条查询结果,搜索用时 296 毫秒
41.
Vibrio cholerae hemolysin (HlyA) is a 65?kDa pore-forming toxin which causes lysis of target eukaryotic cells by forming heptameric channels in the plasma membrane. Deletion of the 15?kDa C-terminus β-prism carbohydrate-binding domain generates a 50?kDa truncated variant (HlyA50) with 1000-fold-reduced pore-forming activity. Previously, we showed by cryo-electron microscopy that the two toxin oligomers have central channels, but the 65?kDa toxin oligomer is a seven-fold symmetric structure with bowl-, ring-, and arm-like domains, whereas the 50?kDa oligomer is an asymmetric jar-like heptamer. In the present study, we determined three-dimensional(3D) structures of HlyA and HlyA50 in presence of erythrocyte stroma and observed that interaction of the 65?kDa toxin with the stroma induced a significant decrease in the height of the β-barrel oligomer with a change in conformation of the ring- and arm-like domains of HlyA. These features were absent in interaction of HlyA50 with stroma. We propose that this conformational transition is critical for membrane-insertion of the toxin.  相似文献   
42.
Entamoeba histolytica is a protist parasite that is the causative agent of amoebiasis, and is a highly motile organism. The motility is essential for its survival and pathogenesis, and a dynamic actin cytoskeleton is required for this process. EhCoactosin, an actin-binding protein of the ADF/cofilin family, participates in actin dynamics, and here we report our studies of this protein using both structural and functional approaches. The X-ray crystal structure of EhCoactosin resembles that of human coactosin-like protein, with major differences in the distribution of surface charges and the orientation of terminal regions. According to in vitro binding assays, full-length EhCoactosin binds both F- and G-actin. Instead of acting to depolymerize or severe F-actin, EhCoactosin directly stabilizes the polymer. When EhCoactosin was visualized in E. histolytica cells using either confocal imaging or total internal reflectance microscopy, it was found to colocalize with F-actin at phagocytic cups. Over-expression of this protein stabilized F-actin and inhibited the phagocytic process. EhCoactosin appears to be an unusual type of coactosin involved in E. histolytica actin dynamics.  相似文献   
43.
There has been considerable progress over the last decade in development of the perovskite solar cells (PSCs), with reported performances now surpassing 25.2% power conversion efficiency. Both long‐term stability and component costs of PSCs remain to be addressed by the research community, using hole transporting materials (HTMs) such as 2,2′,7,7′‐tetrakis(N,N′‐di‐pmethoxyphenylamino)‐9,9′‐spirbiuorene(Spiro‐OMeTAD) and poly[bis(4‐phenyl)(2,4,6‐trimethylphenyl)amine] (PTAA). HTMs are essential for high‐performance PSC devices. Although effective, these materials require a relatively high degree of doping with additives to improve charge mobility and interlayer/substrate compatibility, introducing doping‐induced stability issues with these HTMs, and further, additional costs and experimental complexity associated with using these doped materials. This article reviews dopant‐free organic HTMs for PSCs, outlining reports of structures with promising properties toward achieving low‐cost, effective, and scalable materials for devices with long‐term stability. It summarizes recent literature reports on non‐doped, alternative, and more stable HTMs used in PSCs as essential components for high‐efficiency cells, categorizing HTMs as reported for different PSC architectures in addition to use of dopant‐free small molecular and polymeric HTMs. Finally, an outlook and critical assessment of dopant‐free organic HTMs toward commercial application and insight into the development of stable PSC devices is provided.  相似文献   
44.
Mammalian Na+/H+ exchanger isoform one (NHE1) is a plasma membrane protein responsible for pH regulation in mammalian cells. Excess activity of the protein promotes heart disease and is a trigger of metastasis in cancer. Inhibitors of the protein exist but problems in specificity have delayed their clinical application. Here we examined amino acids involved in two modeled inhibitor binding sites (A, B) in human NHE1. Twelve mutations (Asp159, Phe348, Ser351, Tyr381, Phe413, Leu465, Gly466, Tyr467, Leu468, His473, Met476, Leu481) were made and characterized. Mutants S351A, F413A, Y467A, L468A, M476A and L481A had 40–70% of wild type expression levels, while G466A and H473A expressed 22% ~ 30% of the wild type levels. Most mutants, were targeted to the cell surface at levels similar to wild type NHE1, approximately 50–70%, except for F413A and G466A, which had very low surface targeting. Most of the mutants had measurable activity except for D159A, F413A and G466A. Resistance to inhibition by EMD87580 was elevated in mutants F438A, L465A and L468A and reduced in mutants S351A, Y381A, H473A, M476A and L481A. All mutants with large alterations in inhibitory properties showed reduced Na+ affinity. The greatest changes in activity and inhibitor sensitivity were in mutants present in binding site B which is more closely associated with TM4 and C terminal of extracellular loop 5, and is situated between the putative scaffolding domain and transport domain. The results help define the inhibitor binding domain of the NHE1 protein and identify new amino acids involved in inhibitor binding.  相似文献   
45.
Baculoviruses have enormous potential for use as biopesticides to control insect pest populations without the adverse environmental effects posed by the widespread use of chemical pesticides. However, continuous baculovirus production is susceptible to DNA mutation and the subsequent production of defective interfering particles (DIPs). The amount of DIPs produced and their genome length distribution are of great interest not only for baculoviruses but for many other DNA and RNA viruses. In this study, we elucidate this aspect of virus replication using baculovirus as an example system and both experimental and modeling studies. The existing mathematical models for the virus replication process consider DIPs as a lumped quantity and do not consider the genome length distribution of the DIPs. In this study, a detailed population balance model for the cell‐virus culture is presented, which predicts the genome length distribution of the DIP population along with their relative proportion. The model is simulated using the kinetic Monte Carlo algorithm, and the results agree well with the experimental results. Using this model, a practical strategy to maintain the DIP fraction to near to its maximum and minimum limits has been demonstrated.  相似文献   
46.
The results of pervaporation-coupled esterification of various carboxylic acids with ethanol catalyzed by Porcine pancreatic lipase are reported. The effect of lipase and substrate concentrations has been studied and the advantage of pervaporation on the equilibrium conversion has been deduced. The kinetics of reaction were analyzed with a three-parameter model which coupled the effect of pervaporation. The intrinsic kinetic constants for all the reactions were estimated and correlated with the carbon number, an indicator of hydrophobicity of the acids. It was found that the rate constant increases with decrease in carbon number. The experimental concentration profiles were simulated from the model for all the reactions and the model prediction was found to be reasonably good. The water permeability was also correlated well with acid hydrophobicity. The pervaporation coupled reaction efficiency, as represented by the reaction time for equilibrium conversion, was found to bear a profound relation to membrane surface area per unit volume of the reaction mixture (A/V). The time for equilibrium conversion was found to decrease with an increase in A/V value, reaching a minimum and then increasing with a further increase of A/V. A probable explanation has been postulated for such an observation.  相似文献   
47.
Abstract

N 6 ?(1-hydroxyguanidino)purine IIa, and its 9-β-D-ribonucleoside derivative IIb were prepared by reacting at room temperature 6-hydroxyadenine Ia and 6-hydroxyadenosine Ib, with 1-guanyl-3,5-dimethylpyrazole nitrate in DMF. Refluxing IIa and IIb in 95% ethanol gave N6?(1-hydroxyureido)purine and its ribonucleoside derivative respectively; the latter compound was also obtained by refluxing Ib with 1-guanyl-3,5-dimethylpyrazole nitrate in ethanol. The two base analogs were inactive against L1210 cells in vitro, but the nucleoside derivatives inhibited the growth of these cells by 50% at 5 × 10 -6 and 6 × 10?7 M respectively. Compound IIb, at 200 mg/kg/day × 5, increased the life span of L1210-bearing DBA/2N mice by 57%. Cytofluorometric determinations showed that IIb inhibited cell growth in the G2 phase of the cell cycle. also found to inhibit adenosine deaminase activity with a Ki = 3.47 μM.  相似文献   
48.
Mutations in REarranged during Transfection (RET) receptor tyrosine, followed by the oncogenic activation of RET kinase is responsible for the development of medullary thyroid carcinoma (MTC) that responds poorly to conventional chemotherapy. Targeting RET, therefore, might be useful in tailoring surveillance of MTC patients. Here we showed that theaflavins, the bioactive components of black tea, successfully induced apoptosis in human MTC cell line, TT, by inversely modulating two molecular pathways: (i) stalling PI3K/Akt/Bad pathway that resulted in mitochondrial transmembrane potential (MTP) loss, cytochrome-c release and activation of the executioner caspases-9 and -3, and (ii) upholding p38MAPK/caspase-8/caspase-3 pathway via inhibition of Ras/Raf/ERK. Over-expression of either constitutively active myristoylated-Akt-cDNA (Myr-Akt-cDNA) or dominant-negative-caspase-8-cDNA (Dn-caspase-8-cDNA) partially blocked theaflavin-induced apoptosis, while co-transfection of Myr-Akt-cDNA and Dn-caspase-8-cDNA completely eradicated the effect of theaflavins thereby negating the possibility of existence of other pathways. A search for the upstream signaling revealed that theaflavin-induced disruption of lipid raft caused interference in anchorage of RET in lipid raft that in turn stalled phosphorylation of Ras and PI3Kinase. In such anti-survival cellular micro-environment, pro-apoptotic signals were triggered to culminate into programmed death of MTC cell. These findings not only unveil a hitherto unexplained mechanism underlying theaflavin-induced MTC death, but also validate RET as a promising and potential target for MTC therapy.  相似文献   
49.
Overexpression of anti-apoptotic Bcl-2 is often observed in a wide variety of human cancers. It prevents the induction of apoptosis in neoplastic cells and contributes to resistance to chemotherapy. RNA interference has emerged as an efficient and selective technique for gene silencing. The potential to use small interfering RNA (siRNA) as a therapeutic agent for the treatment of cancer has elicited a great deal of interest. However, insufficient cellular uptake and poor stability have limited its therapeutic applications. The purpose of this study was to prepare chitosan nanoparticles via ionic gelation of chitosan by tripolyphosphate for effective delivery of siRNA to silence the anti-apoptotic Bcl-2 gene in neoplastic cells. Chitosan nanoparticles loaded with siRNA were in the size range 190 to 340 nm with a polydispersive index ranging from 0.04 to 0.2. They were able to completely bind with siRNA, provide protection against nuclease degradation, and enhance the transfection. Cell culture studies revealed that nanoparticles with entrapped siRNA could efficiently silence the antiapoptotic Bcl-2 gene. Studies on Swiss albino mice showed that siRNA could be effectively delivered through nanoparticles. There was significant decrease in the tumor volume. Blocking the expression of anti-apoptotic Bcl-2 can enhance the sensitivity of cancerous cells to anti-cancer drugs and the apoptosis rate. Therefore, nanoformulations with siRNA can be promoted as an adjuvant therapy in combination with anti-cancer drugs.  相似文献   
50.

Background

The Mycobacterium bovis Bacille Calmette-Guérin (BCG) vaccine is given to >120 million infants each year worldwide. Most studies investigating the immune response to BCG have focused on adaptive immunity. However the importance of TCR-gamma/delta (γδ) T cells and NK cells in the mycobacterial-specific immune response is of increasing interest.

Methods

Participants in four age-groups were BCG-immunized. Ten weeks later, in vitro BCG-stimulated blood was analyzed for NK and T cell markers, and intracellular IFNgamma (IFNγ) by flow cytometry. Total functional IFNγ response was calculated using integrated median fluorescence intensity (iMFI).

Results

In infants and children, CD4 and CD4-CD8- (double-negative (DN)) T cells were the main IFNγ-expressing cells representing 43-56% and 27-37% of total CD3+ IFNγ+ T cells respectively. The iMFI was higher in DN T cells compared to CD4 T cells in all age groups, with the greatest differences seen in infants immunized at birth (p=0.002) or 2 months of age (p<0.0001). When NK cells were included in the analysis, they accounted for the majority of total IFNγ-expressing cells and, together with DN Vδ2 γδ T cells, had the highest iMFI in infants immunized at birth or 2 months of age.

Conclusion

In addition to CD4 T cells, NK cells and DN T cells, including Vδ2 γδ T cells, are the key populations producing IFNγ in response to BCG immunization in infants and children. This suggests that innate immunity and unconventional T cells play a greater role in the mycobacterial immune response than previously recognized and should be considered in the design and assessment of novel tuberculosis vaccines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号