首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   44篇
  2023年   4篇
  2022年   12篇
  2021年   17篇
  2020年   12篇
  2019年   13篇
  2018年   11篇
  2017年   15篇
  2016年   13篇
  2015年   22篇
  2014年   19篇
  2013年   34篇
  2012年   45篇
  2011年   44篇
  2010年   15篇
  2009年   21篇
  2008年   22篇
  2007年   23篇
  2006年   14篇
  2005年   20篇
  2004年   18篇
  2003年   15篇
  2002年   8篇
  1999年   5篇
  1998年   2篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1965年   1篇
  1962年   2篇
排序方式: 共有487条查询结果,搜索用时 31 毫秒
61.
Sheets of embryonic epithelial cells coordinate their efforts to create diverse tissue structures such as pits, grooves, tubes, and capsules that lead to organ formation. Such cells can use a number of cell behaviors including contractility, proliferation, and directed movement to create these structures. By contrast, tissue engineers and researchers in regenerative medicine seeking to produce organs for repair or replacement therapy can combine cells with synthetic polymeric scaffolds. Tissue engineers try to achieve these goals by shaping scaffold geometry in such a way that cells embedded within these scaffold self-assemble to form a tissue, for instance aligning to synthetic fibers, and assembling native extracellular matrix to form the desired tissue-like structure. Although self-assembly is a dominant process that guides tissue assembly both within the embryo and within artificial tissue constructs, we know little about these critical processes. Here, we compare and contrast strategies of tissue assembly used by embryos to those used by engineers during epithelial morphogenesis and highlight opportunities for future applications of developmental biology in the field of tissue engineering.  相似文献   
62.
The ability to redesign enzymes to catalyze noncognate chemical transformations would have wide-ranging applications. We developed a computational method for repurposing the reactivity of metalloenzyme active site functional groups to catalyze new reactions. Using this method, we engineered a zinc-containing mouse adenosine deaminase to catalyze the hydrolysis of a model organophosphate with a catalytic efficiency (k(cat)/K(m)) of ~10(4) M(-1) s(-1) after directed evolution. In the high-resolution crystal structure of the enzyme, all but one of the designed residues adopt the designed conformation. The designed enzyme efficiently catalyzes the hydrolysis of the R(P) isomer of a coumarinyl analog of the nerve agent cyclosarin, and it shows marked substrate selectivity for coumarinyl leaving groups. Computational redesign of native enzyme active sites complements directed evolution methods and offers a general approach for exploring their untapped catalytic potential for new reactivities.  相似文献   
63.
Trichomonas vaginalis causes the trichomoniasis, in women and urethritis and prostate cancer in men. Its genome draft published by TIGR in 2007 presents many unusual genomic and biochemical features like, exceptionally large genome size, the presence of hydrogenosome, gene duplication, lateral gene transfer mechanism and the presence of miRNA. To understand some of genomic features we have performed a comparative analysis of metabolic pathways of the T. vaginalis with other 22 significant common organisms. Enzymes from the biochemical pathways of T. vaginalis and other selected organisms were retrieved from the KEGG metabolic pathway database. The metabolic pathways of T. vaginalis common in other selected organisms were identified. Total 101 enzymes present in different metabolic pathways of T. vaginalis were found to be orthologous by using BLASTP program against the selected organisms. Except two enzymes all identified orthologous enzymes were also identified as paralogous enzymes. Seventy-five of identified enzymes were also identified as essential for the survival of T. vaginalis, while 26 as non-essential. The identified essential enzymes also represent as good candidate for novel drug targets. Interestingly, some of the identified orthologous and paralogous enzymes were found playing significant role in the key metabolic activities while others were found playing active role in the process of pathogenesis. The N-acetylneuraminate lyase was analyzed as the candidate of lateral genes transfer. These findings clearly suggest the active participation of lateral gene transfer and gene duplication during evolution of T. vaginalis from the enteric to the pathogenic urogenital environment.  相似文献   
64.
65.
66.
67.
68.
Following the work of Becholtz and Bandeen, a series of glasshouse experiments was made to examine the effects of root-zone interference between Agropyron repens and wheat. In a solution-culture experiment the reduction in growth of wheat due to the presence of A. repens could be largely corrected by increasing the nutrient supply in the solution. In similar studies but using soils, the depression of growth of wheat could not be corrected. Foliage applications of nitrogen to wheat plants grown with A. repens had no effect. Using a split-pot technique it was found that the part of the root system of wheat growing in the same medium as the rhizomes and roots of A. repens was very severely suppressed. These results will be discussed.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号