首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   7篇
  2023年   1篇
  2021年   4篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   10篇
  2009年   10篇
  2008年   9篇
  2007年   10篇
  2006年   9篇
  2005年   8篇
  2004年   8篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有154条查询结果,搜索用时 328 毫秒
81.
In addition to their antibacterial effects, tetracyclines may inhibit interstitial collagenase activity and bone resorption. These properties were assessed morphometrically using minocycline (25 and 50 mg/kg/day given by the IM route) in a rat model of synchronized remodeling in which osteoclastic resorption peaks 4 days after the activating event (the extractions of the upper molars) along the antagonist mandibular cortex, a zone undergoing physiologically active formation. During the first 2 days of activation, minocycline at the two doses impaired very significantly the disorganization of both the osteoid seam and the layer of osteoblasts, a prerequisite to give osteoclasts access to the mineralized bone surface. The number of readily identifiable osteoblasts decreased slightly during this period, suggesting that minocycline prevented their transformation into lining cells. Their synthetic activity, as estimated by the size of the cells and their nucleus, appeared relatively preserved too, mostly with the higher dose. At the peak of osteoclascia, the bone surfaces undergoing remodeling were significantly decreased in the minocycline-treated groups. The resorption surface was reduced (P < 0.0003) as well as the number of osteoclasts (P < 0.0007), which were also significantly smaller. Their resorbing activity was dramatically affected as well: they excavated lacunae whose area was significantly reduced by over 70%. In addition, formation was still a prominent activity in the treated animals. These data are compatible with the inhibition at the early stages of activation of an osteoblast-secreted collagenase whose action may be the elimination of the osteoid seam. The inhibition of an osteoclast collagenase and/or of a bone matrix bound-collagenase may be responsible for the reduction in lacunar size. A direct effect of minocycline on osteoclast resorptive activity may also participate in the low resorption profile, as tetracyclines are known to interfere with the intracellular [Ca2+]. © 1996 Wiley-Liss, Inc.  相似文献   
82.
Gingival epithelial cells are part of the first line of host defense against infection. Toll-like receptors (TLRs) serve important immune and nonimmune functions. We investigated how interferon gamma (INF-γ) and interleukin 13 (IL-13) are involved in the TLR4 ligand-induced regulation of interleukin-8 (IL-8) effects on gingival epithelial cells. We used immunohistochemistry to localize TLR4 in ten healthy and ten periodontitis tissue specimens. Gingival epithelial cells then were primed with Th1 cytokine (INF-γ) or Th2 cytokine (IL-13) before stimulation with Escherichia coli-derived lipopolysaccharide (LPS) and enzyme-linked immunosorbent assay (ELISA) was performed to detect the level of IL-8 secretion in cell culture supernatants. Although both healthy and periodontitis gingival tissue samples expressed TLR4, the periodontitis samples showed more intense expression on gingival epithelial cells. Gingival epithelial cell cultures were primed with either INF-γ or IL-13 before stimulation with TLR4 ligand. Supernatants from co-stimulated epithelial cells exhibited IL-8 production in opposite directions, i.e., as one stimulates the release, the other reduces the release. INF-γ significantly increased TLR4 function, whereas IL-13 significantly decreased TLR4 function, i.e., production of IL-8. Pathogen associated molecular pattern-LPS, shared by many different periodonto-pathogenic bacteria, activates the gingival epithelial cells in a TLR-dependent manner. Diminished or increased TLR function in gingival epithelial cells under the influence of different Th cell types may protect or be harmful due to the altered TLR signaling.  相似文献   
83.
One of the most conspicuous and widely analyzed patterns in ecology is the latitudinal gradient in species richness. Over the 200 years since its recognition, several hypotheses have accumulated in order to account for spatial variations in diversity. Geographic variations in seasonality have been repeatedly proposed as a determinant of community richness. However, the geographic structure of community seasonality has not yet been analyzed. In the present work we evaluated three hypotheses that account for variations in the temporal structuring of communities: first, environmental seasonality determines community seasonality; second, community richness determines its degree of structuring; and third, the presence of an increase in species segregation with latitude, reflected in a pattern of species negative co‐occurrence. The hypotheses were evaluated using path analysis on 29 amphibian communities from South America, connecting latitude, environmental conditions, diversity, seasonality, and coexistence structure – nestedness and negative co‐occurrence – within communities. Latitude positively affects community seasonality through an increase in temperature seasonality, but a weak negative direct effect suggests that other variables not considered in the model – such as the strength of biotic interactions – could also be involved. Both latitude and diversity (directly and indirectly) determine an increase in negative co‐occurrence and nestedness. This suggests that groups of species that are mutually nested in time are internally segregated. Further, the strength of this structure is determined by community diversity and latitude. Temporal structuring of a community is associated with latitude and diversity, pointing to the existence of a systematic change in community organization far beyond, but probably interrelated, with the recognized latitudinal trend in richness. The available information and analysis supported the three hypotheses evaluated.  相似文献   
84.
85.
86.
87.
1. Salinity is a strong selective force for many aquatic organisms, affecting both ecological and evolutionary processes. Most of our knowledge on the effects of salinity on rotifers in the Brachionus plicatilis species complex is based mainly on populations from waterbodies that experience broad environmental changes both seasonally and annually. We tested the hypothesis that, despite the supposedly high potential for gene flow among rotifers inhabiting neighbouring environments, constant salinity has promoted local adaptation, genetic population divergence and even cryptic speciation in B. plicatilis complex populations from three deep maar lakes of distinct salinities [1.1, 6.5 and 9.0 g L?1 total dissolved solids (TDS)] in Central Mexico. 2. To look for local adaptation, we performed common garden experiments to test the effect of different salinities on population density and intrinsic growth rate (r). Then, we evaluated the genetic divergence by sequencing the cytochrome c oxidase subunit I (COI) gene and performed reproductive trials to assess the potential gene flow among the three populations and with other closely related B. plicatilis complex species. 3. We confirmed that the rotifer populations have phenotypic plasticity in tolerance of salinity, but only rotifers from the least saline lake are adapted to low salinity. Among the populations, sequence divergence at COI was very low (just a single haplotype was found), suggesting a persistent founder effect from a relatively recent single colonisation event and a subsequent dispersal from one lake to the others, and a very restricted immigration rate. In the phylogenetic analysis, rotifers from this area of Mexico clustered in the same clade with the middle‐sized species Brachionus ibericus and B. sp. ‘Almenara’. Mexican rotifers showed successful recognition, copulation and formation of hybrids among them, but interpopulation breeding with the Spanish B. ibericus and B. sp. ‘Almenara’ was unsuccessful. 4. We conclude that the B. plicatilis complex populations from these three lakes belong to a new biological species not yet described (presently named B. sp. ‘Mexico’). To our knowledge, this is the first report of local adaptation of a natural B. plicatilis complex population living in freshwater conditions (1.1 g L?1 TDS).  相似文献   
88.
89.
Acrolein is an environmental toxicant, mainly found in smoke released from incomplete combustion of organic matter. Several studies showed that exposure to acrolein can lead to liver damage. The mechanisms involved in acrolein-induced hepatocellular toxicity, however, are not completely understood. This study examined the cytotoxic mechanisms of acrolein on HepG2 cells. Acrolein at pathophysiological concentrations was shown to cause apoptotic cell death and an increase in levels of protein carbonyl and thiobarbituric acid reactive acid substances. Acrolein also rapidly depleted intracellular glutathione (GSH), GSH-linked glutathione-S-transferases, and aldose reductase, three critical cellular defenses that detoxify reactive aldehydes. Results further showed that depletion of cellular GSH by acrolein preceded the loss of cell viability. To further determine the role of cellular GSH in acrolein-mediated cytotoxicity, buthionine sulfoximine (BSO) was used to inhibit cellular GSH biosynthesis. It was observed that depletion of cellular GSH by BSO led to a marked potentiation of acrolein-mediated cytotoxicity in HepG2 cells. To further assess the contribution of these events to acrolein-induced cytotoxicity, triterpenoid compound 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) was used for induction of GSH. Induction of GSH by CDDO-Im afforded cytoprotection against acrolein toxicity in HepG2 cells. Furthermore, BSO significantly inhibited CDDO-Im-mediated induction in cellular GSH levels and also reversed cytoprotective effects of CDDO-Im in HepG2 cells. These results suggest that GSH is a predominant mechanism underlying acrolein-induced cytotoxicity as well as CDDO-Im-mediated cytoprotection. This study may provide understanding on the molecular action of acrolein which may be important to develop novel strategies for the prevention of acrolein-mediated toxicity.  相似文献   
90.
A selection of Boraginaceae genera was used to obtain a framework for the phylogenetic position of some tribes belong to subfamily Boraginoideae and genera within tribe Eritrichieae (Heterocaryum, Rochelia, Eritrichium, Lappula, Lepechiniella, and Asperugo) and related species. Our results were produced on the basis of nrDNA ITS and cpDNAtrnL-F sequences. The combined nrDNA ITS trnL-F data confirm four main clades of Boraginoideae comprising Echiochileae, Boragineae, Lithospermeae, and Cynoglosseae s. l. (including Eritrichieae, Cynoglosseae s. str., and Myosotideae). The tribe Eritrichieae itself at the current status is paraphyletic; some members, for example Asperugo procumbens, Lepechiniella inconspicua, Myosotidium hortensia, and Cryptantha flavoculata are placed out of the core tribe Eritrichieae. The genus Heterocaryum is monophyletic and allied with a subclade of genera Lappula, Lepechiniella, Eritrichium, and Rochelia. Rochelia is monophyletic, but Eritrichium and Lappula are non-monophyletic. Lepechiniella is nested among a group of Lappula species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号