首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   5篇
  63篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   6篇
  2019年   9篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2013年   3篇
  2012年   8篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2005年   2篇
  2001年   1篇
  1996年   1篇
排序方式: 共有63条查询结果,搜索用时 0 毫秒
51.
gamma-Glutamyl transpeptidase (GGT) is the only enzyme known that can cleave the gamma-peptide bond between glutamate and cysteine in glutathione, and is therefore a key step in glutathione degradation. There are three functional GGT genes in Arabidopsis, two of which are considered here. GGT1 and GGT2 are apoplastic, associated with the plasma membrane and/or cell wall. RNA blots and analysis of enzyme activity in knockout mutants suggest that GGT1 is expressed most strongly in leaves but is found throughout the plant. A GGT1::GUS fusion construct showed expression only in vascular tissue, specifically the phloem of the mid-rib and minor veins of leaves, roots and flowers. This localization was confirmed in leaves by laser microdissection. GGT2 expression is limited to embryo, endosperm, outer integument, and a small portion of the funiculus in developing siliques. The ggt2 mutants had no detectable phenotype, while the ggt1 knockouts were smaller and flowered sooner than wild-type. In ggt1 plants, the cotyledons and older leaves yellowed early, and GSSG, the oxidized form of glutathione, accumulated in the apoplastic space. These observations suggest that GGT1 is important in preventing oxidative stress by metabolizing extracellular GSSG, while GGT2 might be important in transporting glutathione into developing seeds.  相似文献   
52.
Temperate forests cover 16% of the global forest area. Within these forests, the understorey is an important biodiversity reservoir that can influence ecosystem processes and functions in multiple ways. However, we still lack a thorough understanding of the relative importance of the understorey for temperate forest functioning. As a result, understoreys are often ignored during assessments of forest functioning and changes thereof under global change. We here compiled studies that quantify the relative importance of the understorey for temperate forest functioning, focussing on litter production, nutrient cycling, evapotranspiration, tree regeneration, pollination and pathogen dynamics. We describe the mechanisms driving understorey functioning and develop a conceptual framework synthesizing possible effects of multiple global change drivers on understorey‐mediated forest ecosystem functioning. Our review illustrates that the understorey's contribution to temperate forest functioning is significant but varies depending on the ecosystem function and the environmental context, and more importantly, the characteristics of the overstorey. To predict changes in understorey functioning and its relative importance for temperate forest functioning under global change, we argue that a simultaneous investigation of both overstorey and understorey functional responses to global change will be crucial. Our review shows that such studies are still very scarce, only available for a limited set of ecosystem functions and limited to quantification, providing little data to forecast functional responses to global change.  相似文献   
53.
Liposomes have been used as delivery vehicles for stabilizing drugs, overcoming barriers to cellular and tissue uptake, and for directing their contents toward specific sites in vivo. Chitosan is a biological macromolecule derived from crustacean shells and has several emerging applications in drug development, obesity control, and tissue engineering. In the present work, the interaction between chitosan and dipalmitoyl phosphatidylcholine (DPPC) liposomes was studied by transmission electron microscopy (TEM), zeta potential, solubilization using the nonionic detergent octylglucoside (OG), as well as Fourier transform infrared (FTIR) spectroscopy and viscosity measurements. The coating of DPPC liposomes by a chitosan layer was confirmed by electron microscope images and the zeta potential of liposomes. Coating of liposome by chitosan resulted in an increase in liposomal size by addition of a layer of 92 ± 27.1 nm. The liposomal zeta potential became increasingly positive as chitosan concentration increased from 0.1 to 0.3% w/v, then it held at a relatively constant value. The amount of detergent needed to completely solubilize the liposomal membrane was increased after coating of liposomes with chitosan, indicating an increased membrane resistance to the detergent and hence a change in the natural membrane permeation properties. In the analysis of FTIR spectra of DPPC, the symmetric and antisymmetric CH2 (at 2,800–3,000 cm−1) bands and the C=O (at 1,740 cm−1) stretching band were investigated in the absence and presence of the chitosan. It was concluded that appropriate combining of the liposomal and chitosan characteristics might be utilized for the improvement of the therapeutic efficacy of liposomes as a drug delivery system.  相似文献   
54.
Upper Cretaceous strata in the Pasquia Hills of the northern Manitoba Escarpment, eastern Saskatchewan, Canada provide a detailed paleoenvironmental and sea-level record of the eastern margin of the Western Interior Seaway. Sediments deposited during the Cenomanian/Turonian Greenhorn marine cycle are dominantly black mudstones deposited in a stratified water column, with bottom-water anoxia recurrently reaching into the photic zone. A middle Cenomanian sea-level lowstand event followed by transgression left a series of bonebeds within the Belle Fourche Member of the Ashville Formation, indicating a sedimentary environment starved of coarse siliciclastics. Maximum sea level resulted in the formation of limestone beds within the Favel Formation, further favoured by reduced terrigenous sediment input compared to the western margin. Limestone sedimentation was followed by a phase of increased freshwater input under lower sea level conditions, and reducing zoo- and phytoplankton diversities. During final Greenhorn regression, eastern Saskatchewan probably turned into a restricted basin severely limiting marine circulation. Poor or absent benthic foraminiferal assemblages and biomarker analysis suggest prevailing watermass stratification throughout the Cenomanian/Turonian transgressive/regressive cycle. This was caused either by a freshwater lid, stratification of Boreal and Tethyan-derived watermasses, or both, to various intensities affected by changing sea level. Basin oxygenation during Niobrara time varies between localities along the eastern margin as documented by presence/absence of benthic and planktic foraminifera.  相似文献   
55.
56.
57.
Quantification of ethinylestradiol (EE) in biological matrices is challenging as it is a very potent drug with a very low Cmax (75 pg.ml−1). Despite the high sensitivity of fluorometric methods, the detection of EE was confined because its structure exhibited very limited fluorescence. Therefore, it must be derivatized first using a fluorogenic agent to produce a more potent fluorescence derivative to achieve the desired ultrasensitive bioanalysis. Here, for the first time, we proposed a promising click fluorescent probe, 4-azido-7-nitrobenzoxadiazole (NBD-AZ) to react with the alkyne group of EE, with the help of copper sulphate and l -ascorbic acid to give a highly fluorescent and stable 1,2,3-triazole derivative. Density functional theory calculation revealed how the triazole formation affects the quantum yield and fluorescence of click reaction product when compared with NBD-AZ. The resulting triazole exhibited a strong signal at a wavelength of 540 nm after excitation at 470 nm. Reaction parameters impacting the intensity of fluorescence were cautiously studied and optimized. The suggested approach has shown outstanding performance, high linearity (25–300 pg.ml−1) and a low detection limit of 7.5 pg.ml−1. The enhanced sensitivity and selectivity were exploited for analyzing EE in plasma using liquid–liquid extraction for samples cleaning up without interference from any biological components and with a mean % recovery of 100.13 ± 0.39. Accuracy, sensitivity, selectivity, simplicity, and cost–effectiveness make this approach a convincing, promising, and appealing alternative to the reported analytical methods for EE bioanalysis in different matrices.  相似文献   
58.
59.

Alfalfa (Medicago sativa L.) is a moderately salt-tolerant plant. This study was conducted to evaluate responses of two contrasting alfalfa genotypes (OMA-84-salt sensitive and OMA-285-salt-tolerant) to components (Na+, and/or Cl?) of salt stress. Alfalfa genotypes were exposed to Na+???salts (without chloride), Cl????salts (without sodium), and NaCl (sodium chloride) stresses with two concentrations (30 and 150 mM). The treatments, involving macronutrients, with the same osmotic potentials, were taken as control. Salt stress, irrespective of type and intensity, caused a significant reduction in plant biomass, physiological (net photosynthetic rate, photosystem II efficiency, chlorophyll fluorescence, water use efficiency, maximum yield of primary photochemistry, and electron transport rate), and shoot mineral (calcium, magnesium, phosphorus, and potassium) contents compared to control; however, this reduction was in the order of NaCl (150 mM)?>?Na+ (150 mM)?>?Cl? (150 mM). The alfalfa genotype OMA-285 sustained growth under both types of salt stresses than the genotype OMA-84 due to less accumulation of Na+ and Cl? ions, maintenance of higher K+/Na+ ratio, and better photosynthetic activities. In conclusion, salt stress caused a significant reduction in alfalfa growth, this reduction was more under NaCl stress and the effect was mainly additive. The alfalfa genotype OMA-285 sustained growth under salt stresses than the genotype OMA-84 due to ionic homeostasis. However, the tested genotypes were more sensitive to Na+ toxicity than the Cl? toxicity, and the contrasting genotypes differed in tissue tolerance of high Na+ and Cl?. Further research is needed to evaluate tissue tolerance in a diverse and large group of alfalfa genotypes to elucidate the general salt tolerance mechanism in alfalfa.

  相似文献   
60.
Of the approximately 34 identified Biomphalaria species,Biomphalaria alexandrina represents the intermediate host of Schistosoma mansoni in Egypt. Using parasitological and SOD1 enzyme assay, this study aimed to elucidate the impact of the age of B. alexandrina snails on their genetic variability and internal defence against S. mansoni infection. Susceptible and resistant snails were reared individually for self-reproduction; four subgroups of their progeny were used in experiment. The young susceptible subgroup showed the highest infection rate, the shortest pre-patent period, the highest total cercarial production, the highest mortality rate and the lowest SOD1 activity. Among the young and adult susceptible subgroups, 8% and 26% were found to be resistant, indicating the inheritance of resistance alleles from parents. The adult resistant subgroup, however, contained only resistant snails and showed the highest enzyme activity. The complex interaction between snail age, genetic background and internal defence resulted in great variability in compatibility patterns, with the highest significant difference between young susceptible and adult resistant snails. The results demonstrate that resistance alleles function to a greater degree in adults, with higher SOD1 activity and provide potential implications for Biomphalaria control. The identification of the most susceptible snail age enables determination of the best timing for applying molluscicides. Moreover, adult resistant snails could be beneficial in biological snail control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号