首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   16篇
  2024年   2篇
  2023年   3篇
  2022年   9篇
  2021年   14篇
  2020年   8篇
  2019年   13篇
  2018年   11篇
  2017年   8篇
  2016年   10篇
  2015年   9篇
  2014年   7篇
  2013年   10篇
  2012年   13篇
  2011年   12篇
  2010年   9篇
  2009年   5篇
  2008年   8篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   7篇
  2003年   2篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1995年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1984年   1篇
  1983年   6篇
  1982年   3篇
  1979年   3篇
  1977年   2篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
201.
202.
Poly(hydroxybutyrate) (PHB) has become an attractive biomaterial in research and development for past few years. It is natural bio-based aliphatic polyester produced by many types of bacteria. Due to its biodegradable, biocompatible, and eco-friendly nature, PHB can be used in line with bioactive species. However, high production cost, thermal instability, and poor mechanical properties limit its desirable applications. So there is need to incorporate PHB with other materials or biopolymers for the development of some novel PHB based biocomposites for value addition. Many attempts have been employed to incorporate PHB with other biomaterials (or biopolymers) to develop sustainable biocomposites. In this review, some recent developments in the synthesis of PHB based biocomposites and their biomedical, packaging and tissue engineering applications have been focused. The development of biodegradable PHB based biocomposites with improved mechanical properties could be used to overcome its native limitations hence to open new possibilities for industrial applications.  相似文献   
203.
204.
Defects in primary cilia result in human diseases known as ciliopathies. The retinitis pigmentosa GTPase regulator (RPGR), mutated in the most severe form of the eye disease, is located at the transition zone of the ciliary organelle. The RPGR‐interacting partner PDEδ is involved in trafficking of farnesylated ciliary cargo, but the significance of this interaction is unknown. The crystal structure of the propeller domain of RPGR shows the location of patient mutations and how they perturb the structure. The RPGR·PDEδ complex structure shows PDEδ on a highly conserved surface patch of RPGR. Biochemical experiments and structural considerations show that RPGR can bind with high affinity to cargo‐loaded PDEδ and exposes the Arl2/Arl3‐binding site on PDEδ. On the basis of these results, we propose a model where RPGR is acting as a scaffold protein recruiting cargo‐loaded PDEδ and Arl3 to release lipidated cargo into cilia.  相似文献   
205.
Endothelial dysfunction (ED) is a key feature of diabetes and is a major cause of diabetic vasculopathy. Diabetic patients who also exhibit hyperlipidaemia suffer from accelerated vascular complications. While the deleterious effects of high glucose levels (HG) and hyperlipidaemia alone on ED are well established, the effects of combined hyperlipidaemia and HG have not been thoroughly studied. Therefore, the current study examines whether HG and hyperlipidaemia exert synergistic ED, and explores the mechanisms underlying this phenomenon. We applied multi-disciplinary approaches including cultured HUVECs and HMEC-1 as well as knockout mice CByJ.129S7(B6)-Ldlrtm1Her/J (LDLR−/−) to investigate the mechanisms underlying combined HG and hyperlipidaemia-induced ED. Incremental doses of glucose in the presence or absence of OxLDL were added to HUVECs and HMEC-1. After 5 days, the status of nitric oxide (NO) and endothelin (ET)-1 systems as well as their signal transduction were assessed using Western blot, ELISA and immunoreactive staining. The effects of chronic combination of HG and hyperlipidaemia on endothelial integrity and function as well as alterations in circulatory NO and ET-1 systems were examined in knockout mice LDLR−/− and their wild-type. HUVEC cells exposed to HG and OxLDL displayed enhanced ET-1 production, more than HG or OxLDL when added alone. Overproduction of ET-1 stems from up-regulation of endothelin converting enzyme (ECE)-1 as observed under these conditions. In contrast, combination of HG and OxLDL dramatically decreased both total endothelial NO synthase (eNOS) by 60%, and activated eNOS (peNOS) by 80%. Moreover, NRF2 decreased by 42% and its active form (pNRF2) by 56%, as compared to baseline. Likewise, ETB levels decreased by 64% from baseline on endothelial cells. Furthermore, diabetic LDLR−/− mice displayed a higher blood pressure, plasma triglycerides, cholesterol, ET-1 and NO2/NO3 levels, when compared with normoglycemic LDLR−/− and BALB mice. Combined hyperglycaemia and hyperlipidaemia activates the ET system and attenuates the nitric oxide system with the Nrf2 signalling pathway. These findings suggest that perturbations in these paracrine systems may contribute to ED.  相似文献   
206.
Complete serial sectioning of the medulla oblongata in monkey, cat, guinea pig, and japanese dancing mouse and incubation for somatostatin-immunoreaction was carried out. Numerous regions of the medulla oblongata such as the nucleus reticularis gigantocellularis, nucleus cuneatus et gracillis, nucleus raphe magnus, nucleus tractus solitarius, nucleus vestibularis, and parts of the oliva contain dense networks of somatostatin-immunoreactive nerve fibers. Cell bodies were seen in the nucleus reticularis medullae oblongatae. In the spinal cord the sections from each segment were analyzed, showing the highest concentrations of somatostatinergic fibers in the substantia gelantinosa of the columna dorsalis. Cell bodies were seen in the zona intermedia centralis, especially in the upper cervical segments. Many positive fibers were also seen in the entire zona intermedia and the columna ventralis. Especially prominent was the immunoreactivity in the zona intermediolateralis of the thoracic segments and the columna ventralis of the lower lumbar and sacral segments.  相似文献   
207.

Optimization of microalgal biomass harvesting is essential to produce effective and optimum outcomes that can contribute towards a feasible and economical harvesting technique. Two Chlorella species were used, namely, C. vulgaris and C. sorokiniana UKM3. Two essential factors affecting microalgal biomass harvesting via flocculation, namely, the initial pH of the microalgal broth and flocculant (chitosan) concentration were studied. The optimization process was conducted by using a response surface methodology (RSM) based on the model of face-centered-central composite design (FC-CCD). The potential for biofuel application of the harvested biomass was evaluated based on the production of fatty acid methyl esters (FAMEs) by transesterification. The quadratic models obtained from the RSM significantly fitted the experiment data as the p-values were less than 0.05. The initial pH of the microalgal suspension was found to have a more significant effect on the flocculation process than flocculant concentration. For C. vulgaris, the highest flocculant efficiency of 98.7% was obtained at a chitosan concentration of 0.2 g L?1 and an initial pH of 12.0, whereas for C. sorokiniana UKM3, at 0.15 g L?1 of chitosan and initial pH of 12.0 produced the highest efficiency of 97.1%. The harvested biomass of both species exhibited a high content of palmitic acid (C16:0) with 29.74 wt% and 11.81 wt% of dry biomass for C. vulgaris and C. sorokiniana UKM3, respectively. This study showed that Chlorella species can be harvested efficiently using the flocculation process and manifested an excellent potential for biodiesel production where palmitic acid (C16:0) is one of the main compounds for high-acid oil-biodiesel.

  相似文献   
208.
Journal of Plant Research - Potato plants are often exposed to biotic and abiotic stresses that negatively impact their growth, development, and yield. Plants respond to different stresses by...  相似文献   
209.
Molecular Biology Reports - Myeloid cell leukemia-1 (MCL-1) is a component of the Bcl-2 anti-apoptotic family that plays a key role in cell proliferation and differentiation. Despite tremendous...  相似文献   
210.

An all-optical switch based on plasmonic metal–insulator–metal (MIM) waveguides and the Mach–Zehnder (MZ) interferometer is designed. In order to realize an all-optical and active switch, a nonlinear material with intensity-dependent refractive index is introduced in one arm. Other than studying a typical MZ structure, we also investigate the asymmetric case where unequal thicknesses and distances for MZ arms are proposed. The finite element method (FEM) with a refined triangle mesh is employed for simulations. Results for ON and OFF states are provided with or without employing the pump field. Investigation of the geometrical dispersion reveals tunability of the structure for specific frequencies in the terahertz region. Finally, we show that introducing asymmetric arms provides better tunability in the designed ultrafast nano-scale switch and suggests its potential applications in integrated optical circuits.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号