首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   21篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2018年   6篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   7篇
  2013年   3篇
  2012年   9篇
  2011年   9篇
  2010年   6篇
  2009年   10篇
  2008年   16篇
  2007年   27篇
  2006年   14篇
  2005年   16篇
  2004年   22篇
  2003年   16篇
  2002年   23篇
  2001年   6篇
  2000年   9篇
  1999年   8篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
排序方式: 共有276条查询结果,搜索用时 15 毫秒
161.
162.
Claudin-2 is expressed in human lung adenocarcinoma tissue and cell lines, although it is absent in normal lung tissue. However, the role of claudin-2 in cell proliferation and the regulatory mechanism of intracellular distribution remain undefined. Proliferation of human adenocarcinoma A549 cells was decreased by claudin-2 knockdown together with a decrease in the percentage of S phase cells. This knockdown decreased the expression levels of ZONAB and cell cycle regulators. Claudin-2 was distributed in the nucleus in human adenocarcinoma tissues and proliferating A549 cells. The nuclear distribution of ZONAB and percentage of S phase cells were higher in cells exogenously expressing claudin-2 with a nuclear localization signal than in cells expressing claudin-2 with a nuclear export signal. Nuclear claudin-2 formed a complex with ZO-1, ZONAB, and cyclin D1. Nuclear distribution of S208A mutant, a dephosphorylated form of claudin-2, was higher than that of wild type. We suggest that nuclear distribution of claudin-2 is up-regulated by dephosphorylation and claudin-2 serves to retain ZONAB and cyclin D1 in the nucleus, resulting in the enhancement of cell proliferation in lung adenocarcinoma cells.  相似文献   
163.
164.
Vacuolar-type H(+)-ATPase (V-ATPase or V-type ATPase) is a multisubunit complex comprised of a water-soluble V(1) complex, responsible for ATP hydrolysis, and a membrane-embedded V(o) complex, responsible for proton translocation. The V(1) complex of Thermus thermophilus V-ATPase has the subunit composition of A(3)B(3)DF, in which the A and B subunits form a hexameric ring structure. A central stalk composed of the D and F subunits penetrates the ring. In this study, we investigated the pathway for assembly of the V(1) complex by reconstituting the V(1) complex from the monomeric A and B subunits and DF subcomplex in vitro. Assembly of these components into the V(1) complex required binding of ATP to the A subunit, although hydrolysis of ATP is not necessary. In the absence of the DF subcomplex, the A and B monomers assembled into A(1)B(1) and A(3)B(3) subcomplexes in an ATP binding-dependent manner, suggesting that ATP binding-dependent interaction between the A and B subunits is a crucial step of assembly into V(1) complex. Kinetic analysis of assembly of the A and B monomers into the A(1)B(1) heterodimer using fluorescence resonance energy transfer indicated that the A subunit binds ATP prior to binding the B subunit. Kinetics of binding of a fluorescent ADP analog, N-methylanthraniloyl ADP (mant-ADP), to the monomeric A subunit also supported the rapid nucleotide binding to the A subunit.  相似文献   
165.
To improve the DNA hydrolytic activity of the zinc finger nuclease, we have created a new artificial zinc finger nuclease (ZWH4) by connecting two distinct zinc finger domains possessing different types of Zn(II) binding sites (Cys2His2- and His4-types). The overall fold of ZWH4 is similar to that of the wild-type Sp1 zinc finger (Sp1(zf123)) as revealed by circular dichroism spectroscopy. The gel mobility shift assay demonstrated that ZWH4 binds to the GC box DNA, although the DNA-binding affinity is lower than that of Sp1(zf123). Evidently, ZWH4 hydrolyzes the covalently closed circular plasmid DNA (form I) containing the GC box (pBSGC) to the linear duplex DNA (form III) in the presence of a higher concentration (50 times) of the protein than DNA for a 24-h reaction. Of special interest is the fact that the novel mixed zinc finger protein containing the Cys2His2- and His4-type domains was first created. The present results provide the useful information for the redesign strategy of an artificial nuclease based on the zinc finger motif.  相似文献   
166.
Human artificial chromosomes (HACs) are promising reagents for the analysis of chromosome function. While HACs are maintained stably, the segregation mechanisms of HACs have not been investigated in detail. To analyze HACs in living cells, we integrated 256 copies of the Lac operator into a precursor yeast artificial chromosome (YAC) containing alpha-satellite DNA and generated green fluorescent protein (GFP)-tagged HACs in HT1080 cells expressing a GFP-Lac repressor fusion protein. Time-lapse analyses of GFP-HACs and host centromeres in living mitotic cells indicated that the HAC was properly aligned at the spindle midzone and that sister chromatids of the HAC separated with the same timing as host chromosomes and moved to the spindle poles with mobility similar to that of the host centromeres. These results indicate that a HAC composed of a multimer of input alpha-satellite YACs retains most of the functions of the centromeres on natural chromosomes. The only difference between the HAC and the host chromosome was that the HAC oscillated more frequently, at higher velocity, across the spindle midzone during metaphase. However, this provides important evidence that an individual HAC has the capacity to maintain tensional balance in the pole-to-pole direction, thereby stabilizing its position around the spindle midzone.  相似文献   
167.
We have improved the methods for the standard competitive growth assay of human immunodeficiency virus type 1 (HIV-1). The cloning step for the mixed viral population and subsequent genotype analysis for arbitrary numbers of clones were excluded from procedures. Instead, a single nucleotide polymorphism (SNP)-detection step was devised for the determination of viral populations. The quantitative SNP-detection method can rapidly estimate the proportion of wild-type and mutant populations with high reproducibility. Consequently, this method allows manipulation of many samples within a short period. Using this new competitive growth assay, replicative fitness of drug-resistant HIV-1 containing an M46I amino acid mutation in the protease was assessed in the presence or absence of indinavir. Without indinavir, replicative fitness of wild-type HIV-1 surpassed that of M46I-mutated HIV-1, and the fraction of mutated virus was reduced to about 10% at passage #9. In contrast, the fraction of M46I-mutated virus increased to >90% at passage #5 in the presence of 26.4 nM indinavir. Almost identical results were obtained for L90M-mutated HIV-1 with or without saquinavir. HIV-1 can survive under indinavir pressure by acquiring M46I mutation, as with acquisition of the L90M mutation under saquinavir pressure. However, these mutations damage viral replicative fitness under natural conditions without any drugs. Subtle differences between wild-type and mutant viruses are thus easily detected using the improved method.  相似文献   
168.
Murakami S  Aoki N 《Biomacromolecules》2006,7(7):2122-2127
Novel bio-based hydrogels were prepared by cross-linking of microbial poly(gamma-glutamic acid) (PGA) with saccharides such as glucose, maltotriose, and cyclodextrin (CD) in the presence of water-soluble carbodiimide in dimethyl sulfoxide (DMSO) by one-pot synthesis at 25 degrees C for 24 h. The degradation of the gels in alkaline solution (pH 9) at 37 degrees C was also investigated. The PGA gels cross-linked with various neutral saccharides were obtained in relatively high recovery yields by use of a base like 4,4-(dimethylamino)pyridine. The PGA gel cross-linked by glucose showed the highest water absorption of 3000 g/g. The PGA gels cross-linked by CDs showed higher water absorption than those cross-linked by the corresponding linear saccharides. It was revealed that the water absorption of the PGA gel was affected by the cross-linker content and also the structure of cross-linkers as they had an effect on the cross-linking density of the PGA gel. The PGA gels were hydrolyzed under alkaline condition (pH 9) at 37 degrees C. The degradation rate was higher when the cross-linker content of the gel was lower.  相似文献   
169.

Background  

The role of different chemokine receptors in the pathogenesis of multiple sclerosis (MS) has been extensively investigated; however, little is known about the difference in the role of chemokine receptors between the pathogenesis of neuromyelitis optica (NMO) and MS. Therefore, we examined the expression of chemokine receptors on peripheral blood lymphocytes (PBL) in MS and NMO.  相似文献   
170.
Ceriporic acids are a class of alk(en)ylitaconic acids produced by a selective lignin-degrading fungus, Ceriporiopsis subvermispora. Their structural units have similarity with biologically important lichen acids, such as chaetomellic and protolichesterinic acids. The unique function of alkylitaconic acid is the redox silencing of the Fenton reaction system by inhibiting reduction of Fe(3+). As estimated by the catalytic function of Delta9-desaturases, 7-hexadecenyl derivatives bearing a trans configuration have not been reported in the family of alk(en)ylitaconic acids, i.e. the structurally similar lichen acids-alk(en)ylcitraconic and paraconic acids. In this paper, we discuss the isolation of an itaconic acid derivative with an (E)-7-hexadecenyl chain from cultures of C. subvermispora. To identify the natural metabolite, (E)- and (Z)-7-hexadecenylitaconic acids were chemically synthesised. The isolated metabolite was identical to the synthetic (E)-hexadecenylitaconic acid and was designated as ceriporic acid D. Administration of (13)C-[U]-glucose demonstrated that ceriporic acid C and trans-7-hexadecenylitaconic acid (ceriporic acid D) were biosynthesised de novo by C. subvermispora.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号