首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1118篇
  免费   64篇
  国内免费   5篇
  2023年   14篇
  2022年   27篇
  2021年   97篇
  2020年   65篇
  2019年   78篇
  2018年   53篇
  2017年   34篇
  2016年   37篇
  2015年   63篇
  2014年   72篇
  2013年   87篇
  2012年   79篇
  2011年   80篇
  2010年   36篇
  2009年   36篇
  2008年   39篇
  2007年   31篇
  2006年   27篇
  2005年   23篇
  2004年   22篇
  2003年   19篇
  2002年   14篇
  2001年   6篇
  2000年   7篇
  1999年   7篇
  1998年   9篇
  1997年   6篇
  1995年   2篇
  1994年   7篇
  1993年   4篇
  1992年   4篇
  1991年   9篇
  1990年   8篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   7篇
  1981年   4篇
  1980年   9篇
  1979年   10篇
  1978年   3篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1974年   6篇
  1972年   4篇
排序方式: 共有1187条查询结果,搜索用时 484 毫秒
91.
92.
Nowadays, increased use of nanomaterials in industry and biomedicine poses potential risks to human health and the environment. Studying their possible toxicological effects is therefore of great significance. The present investigation was designed to examine the status of oxidative stress induced by nanoparticles (NPs) of ferric oxide (Fe2O 3) and titanium oxide (TiO 2) with their micro-sized counterpart on mouse lung and bone marrow–derived normal tissue cells. We assessed the induction of oxidative stress by measuring its indicators such as antioxidant scavenging activity of superoxide dismutase and catalase as well as malondialdehyde concentration. Moreover, colony formation of bone marrow cells was assayed following induction with colony stimulating factor (CSF) from lung cells. NPs had a more potent stimulatory effect on the oxidative stress status than their micron-sized counterparts. In addition, the highest level of oxidative stress derived from TiO 2 NPs was observed in both tissue types. Cotreatment with NPs and the antioxidant α-tocopherol reduced antioxidant activities and membrane lipid peroxidation (LPO) in the lung cells, but increased CSF-induced colony formation activity of bone marrow cells, suggesting that oxidative stress may be the cause of the cytotoxic effects of NPs. It is concluded that free radicals generated following exposure to NPs resulted in significant oxidative stress in mouse cells, indicated by increased LPO and antioxidant enzyme activity and decreased colony formation.  相似文献   
93.
94.
95.
Norepinephrine (NE) stimulates phospholipase D (PLD) through a Ras/MAPK pathway in rabbit vascular smooth muscle cells (VSMC). NE also activates calcium influx and calmodulin (CaM)-dependent protein kinase II-dependent cytosolic phospholipase A(2) (cPLA(2)). Arachidonic acid (AA) released by cPLA(2)-catalyzed phospholipid hydrolysis is then metabolized into hydroxyeicosatetraenoic acids (HETEs) through lipoxygenase and cytochrome P450 4A (CYP4A) pathways. HETEs, in turn, have been shown to stimulate Ras translocation and to increase MAPK activity in VSMC. This study was conducted to determine the contribution of cPLA(2)-derived AA and its metabolites (HETEs) to the activation of PLD. NE-induced PLD activation was reduced by two structurally distinct CaM antagonists, W-7 and calmidazolium, and by CaM-dependent protein kinase II inhibition. Blockade of cPLA(2) activity or protein depletion with selective cPLA(2) antisense oligonucleotides abolished NE-induced PLD activation. The increase in PLD activity elicited by NE was also blocked by inhibitors of lipoxygenases (baicalein) and CYP4A (17-octadecynoic acid), but not of cyclooxygenase (indomethacin). AA and its metabolites (12(S)-, 15(S)-, and 20-HETEs) increased PLD activity. PLD activation by AA and HETEs was reduced by inhibitors of Ras farnesyltransferase (farnesyl protein transferase III and BMS-191563) and MEK (U0126 and PD98059). These data suggest that HETEs are the mediators of cPLA(2)-dependent PLD activation by NE in VSMC. In addition to cPLA(2), PLD was also found to contribute to AA release for prostacyclin production via the phosphatidate phosphohydrolase/diacylglycerol lipase pathway. Finally, a catalytically inactive PLD(2) (but not PLD(1)) mutant inhibited NE-induced PLD activity, and PLD(2) was tyrosine-phosphorylated in response to NE by a MAPK-dependent pathway. We conclude that NE stimulates cPLA(2)-dependent PLD(2) through lipoxygenase- and CYP4A-derived HETEs via the Ras/ERK pathway by a mechanism involving tyrosine phosphorylation of PLD(2) in rabbit VSMC.  相似文献   
96.
97.
98.
We recently reported that a considerable amount of the sodium-D-glucose cotransporter SGLT1 present in Caco-2 cells, a model for human enterocytes, is located in intracellular compartments attached to microtubules (Kipp H, Khoursandi S, Scharlau D, and Kinne RKH. Am J Physiol Cell Physiol 285: C737–C749, 2003). A similar distribution pattern was also observed in enterocytes in thin sections from human jejunum, highlighting the validity of the Caco-2 cell model. Fluorescent surface labeling of live Caco-2 cells revealed that the intracellular compartments containing SGLT1 were accessible by endocytosis. To elucidate the role of endosomal SGLT1 in the regulation of sodium-dependent D-glucose uptake into enterocytes, we compared SGLT1-mediated D-glucose uptake into Caco-2 cells with the subcellular distribution of SGLT1 after challenging the cells with different stimuli. Incubation (90 min) of Caco-2 cells with mastoparan (50 µM), a drug that enhances apical endocytosis, shifted a large amount of SGLT1 from the apical membrane to intracellular sites and significantly reduced sodium-dependent -[14C]methyl-D-glucose uptake (–60%). We also investigated the effect of altered extracellular D-glucose levels. Cells preincubated (1 h) with D-glucose-free medium exhibited significantly higher sodium-dependent -[14C]methyl-D-glucose uptake (+45%) than did cells preincubated with high D-glucose medium (100 mM, 1 h). Interestingly, regulation of SGLT1-mediated D-glucose uptake into Caco-2 cells by extracellular D-glucose levels occurred without redistribution of cellular SGLT1. These data suggest that, pharmacologically, D-glucose uptake can be regulated by a shift of SGLT1 between the plasma membrane and the endosomal pool; however, regulation by the physiological substrate D-glucose can be explained only by an alternative mechanism. endosomes; enterocytes  相似文献   
99.
Predicting gene expression from sequence   总被引:36,自引:0,他引:36  
Beer MA  Tavazoie S 《Cell》2004,117(2):185-198
  相似文献   
100.
Mapping global histone acetylation patterns to gene expression   总被引:37,自引:0,他引:37  
Kurdistani SK  Tavazoie S  Grunstein M 《Cell》2004,117(6):721-733
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号