首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   5篇
  52篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
11.
Zhai P  Sadoshima J 《Autophagy》2012,8(1):138-139
Autophagy is a catabolic process that degrades long-lived proteins, pathogens and damaged organelles. Autophagy is active in the heart at baseline and is further stimulated by stresses, such as nutrient starvation, ischemia/reperfusion (I/R) and heart failure. Baseline autophagy plays an adaptive role in the heart, and contributes to the maintenance of cardiac structure and function and the inhibition of age-associated abnormalities, by achieving quality control of proteins and organelles. Activation of autophagy during ischemia is beneficial because it improves cell survival and cardiac function. However, excessive autophagy with robust upregulation of BECN1 during reperfusion appears to enhance cell death, which is detrimental to the heart. We have shown recently that autophagy during prolonged ischemia and I/R is critically regulated by glycogen synthase kinase-3β (GSK-3β), a ubiquitously expressed serine/threonine kinase, in a phase-dependent manner. Here we discuss the role of GSK-3β in mediating autophagy in the heart.  相似文献   
12.
In this study we have shown that the histone variant H2A.z is up-regulated during cardiac hypertrophy. Upon its knock-down with RNA interference, hypertrophy and the underlying increase in growth-related genes, protein synthesis, and cell size were down-regulated. During attempts to understand the mode of regulation of H2A.z, we found that overexpression of silent information regulator 2alpha (Sir2alpha) specifically induced down-regulation of H2A.z via NAD-dependent activity. This effect was reversed by the proteasome inhibitor epoxomicin, suggesting a Sir2alpha-mediated ubiquitin/proteasome-dependent mechanism for degradation of H2A.z. An increase in Sir2alpha also resulted in a dose-dependent reduction of the response to hypertrophic stimuli, whereas its inhibition resulted in enhanced hypertrophy and apoptosis. We have shown that Sir2alpha directly deacetylates H2A.z. Mutagenesis proved that lysines 4, 7, 11, and 13 do not play a role in the stability of H2A.z, whereas Lys-15 was indispensable. Meanwhile, Lys-115 and conserved, ubiquitinatable Lys-121 are critical for Sir2alpha-mediated degradation. Fusion of the C terminus of H2A.z (amino acids 115-127) to H2A.x or green fluorescence protein conferred Sir2alpha-inducible degradation to the former protein only. Because H2A.x and H2A.z have conserved N-tails, this implied that both the C and N termini are critical for mediating the effect of Sir2alpha. In short, the results suggest that H2A.z is required for cardiac hypertrophy, where its stability and the extent of cell growth and apoptosis are moderated by Sir2alpha. We also propose that Sir2alpha is involved in deacetylation of H2A.z, which results in ubiquitination of Lys-115 and Lys-121 and its degradation via a ubiquitin/proteasome-dependent pathway.  相似文献   
13.
Mechanical stress contributes to vascular disease related to hypertension. Activation of ERK is key to mediating cellular proliferation and vascular remodeling in response to stretch stress. However, the mechanism by which stretch mediates ERK activation in the vascular tissue is still unclear. Caveolin, a major component of a flasklike invaginated caveolae, acts as an adaptor protein for an integrin-mediated signaling pathway. We found that cyclic stretch transiently induced translocation of caveolin from caveolae to noncaveolar membrane sites in vascular smooth muscle cells (VSMCs). This translocation of caveolin was determined by detergent solubility, sucrose gradient fractionation, and immunocytochemistry. Cyclic stretch induced ERK activation; the activity peaked at 5 min (the early phase), decreased gradually, but persisted up to 120 min (the late phase). Disruption of caveolae by methyl-beta-cyclodextrin, decreasing the caveolar caveolin and accumulating the noncaveolar caveolin, enhanced ERK activation in both the early and late phases. When endogenous caveolins were downregulated, however, the late-phase ERK activation was subsided completely. Caveolin, which was translocated to noncaveolar sites in response to stretch, is associated with beta1-integrins as well as with Fyn and Shc, components required for ERK activation. Taken together, caveolin in caveolae may keep ERK inactive, but when caveolin is translocated to noncaveolar sites in response to stretch stress, caveolin mediates stretch-induced ERK activation through an association with beta1-integrins/Fyn/Shc. We suggest that stretch-induced translocation of caveolin to noncaveolar sites plays an important role in mediating stretch-induced ERK activation in VSMCs.  相似文献   
14.
Transgenic mice with cardiac-specific overexpression of active Akt (TG) not only exhibit hypertrophy but also show enhanced left ventricular (LV) function. In 3-4-month-old TG, heart/body weight was increased by 60% and LV ejection fraction was elevated (84 +/- 2%, p < 0.01) compared with nontransgenic littermates (wild type (WT)) (73 +/- 1%). An increase in isolated ventricular myocyte contractile function (% contraction) in TG compared with WT (6.1 +/- 0.2 versus 3.5 +/- 0.2%, p < 0.01) was associated with increased Fura-2 Ca2+ transients (396 +/- 50 versus 250 +/- 24 nmol/liter, p < 0.05). The rate of relaxation (+dL/dt) was also enhanced in TG (214 +/- 15 versus 98 +/- 18 microm/s, p < 0.01). L-type Ca2+ current (ICa) density was increased in TG compared with WT (-9.0 +/- 0.3 versus 7.2 +/- 0.3 pA/pF, p < 0.01). Sarcoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) protein levels were increased (p < 0.05) by 6.6-fold in TG, which could be recapitulated in vitro by adenovirus-mediated overexpression of Akt in cultured adult ventricular myocytes. Conversely, inhibiting SERCA with either ryanodine or thapsigargin affected myocyte contraction and relaxation and Ca2+ channel kinetics more in TG than in WT. Thus, myocytes from mice with overexpressed Akt demonstrated enhanced contractility and relaxation, Fura-2 Ca2+ transients, and Ca2+ channel currents. Furthermore, increased protein expression of SERCA2a plays an important role in mediating enhanced LV function by Akt. Up-regulation of SERCA2a expression and enhanced LV myocyte contraction and relaxation in Akt-induced hypertrophy is opposite to the down-regulation of SERCA2a and reduced contractile function observed in many other forms of LV hypertrophy.  相似文献   
15.
The effect of omega-conotoxin GVIA (CgTX), an N-and L-type voltage-sensitive calcium channel (VSCC) blocker, on the release of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum before and during transient cerebral ischemia in spontaneously hypertensive rats was studied using an in vivo brain dialysis technique. Continuous perfusion of CgTX in the striatum was started 20 min before ischemia and concentrations of dopamine and DOPAC in the dialysate were measured using HPLC with an electro-chemical detector. Before ischemia, both 10 and 100 microM CgTX significantly lowered the concentration of dopamine, to 49% of the basal values. DOPAC concentrations also decreased significantly, by 28 and 17%, respectively. Forebrain ischemia, produced by bilateral carotid artery occlusion, reduced striatal blood flow to less than 6% of the resting value in each group. During 20 min of ischemia, the vehicle group showed a marked increase in dopamine (175 times the basal concentration). In the 10 or 100 microM CgTX perfusion group, in contrast, dopamine release was significantly attenuated, to 38 or 29% of the vehicle group, respectively. DOPAC concentrations decreased during ischemia to 58% of the basal value in the vehicle group and 49% in both CgTX groups. These results indicate that the massive release of striatal dopamine during ischemia depends largely on the influx of extracellular calcium via CgTX-sensitive VSCCs.  相似文献   
16.
17.
During the development of hypertrophy, cardiac myocytes increase organization of the sarcomere, a highly ordered contractile unit in striated muscle cells. Several hypertrophic agonists, such as angiotensin II, phenylephrine, and endothelin-1, have been shown to promote the sarcomere organization. However, the signaling pathway, which links extracellular stimuli to sarcomere organization, has not been clearly demonstrated. Here, we demonstrate that myosin light chain kinase specifically mediates agonist-induced sarcomere organization during early hypertrophic response. Acute administration of a hypertrophic agonist, phenylephrine, or angiotensin II, causes phosphorylation of myosin light chain 2v both in cultured cardiac myocytes and in the adult heart in vivo. We also show that both sarcomere organization and myosin light chain 2v phosphorylation are dependent on the activation of Ca2+/calmodulin pathway, a known activator of myosin light chain kinase. These results define a new and specific role of myosin light chain kinase in cardiac myocytes, which may provide a rapid adaptive mechanism in response to hypertrophic stimuli.  相似文献   
18.
19.
20.
1. Properties of the voltage-dependent anion-selective channel in cultured smooth muscle cells of the rat aorta were studied using the patch-clamp technique. 2. The channel had a single channel conductance of 346 +/- 4 pS (n = 43, mean +/- SEM) with symmetrical 142 mM-Cl- solution in inside-out patch configurations. 3. The channel was activated spontaneously at a potential range -20 approximately +20 mV and inactivated more rapidly with increases to more positive or negative potentials. 4. The channel was selective for anions and the permeability ratio for monovalent anion was Br-:Cl-:HCOO-:CH3COO-:propionate-:aspartate- = 1.1:1:0.7:0.4: less than 0.02: less than 0.02. 5. The openings of the channels were observed more frequently in inside-out membrane patches than in cell-attached ones, and were independent of intracellular free Ca concentrations. 6. The density of this channel was estimated to be 1.3/micron2. 7. Physiological roles of the channel were discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号