首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   21篇
  2022年   6篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   6篇
  2016年   3篇
  2015年   7篇
  2014年   9篇
  2013年   13篇
  2012年   9篇
  2011年   20篇
  2010年   7篇
  2009年   5篇
  2008年   23篇
  2007年   16篇
  2006年   13篇
  2005年   13篇
  2004年   12篇
  2003年   15篇
  2002年   7篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1971年   4篇
  1968年   1篇
  1966年   1篇
排序方式: 共有243条查询结果,搜索用时 31 毫秒
21.
22.
Wild-type plastocyanin from the cyanobacterium Synechocystis sp. PCC 6803 does not form any kinetically detectable transient complex with Photosystem I (PS I) during electron transfer, but the D44R/D47R double mutant of copper protein does [De la Cerda et al. (1997) Biochemistry 36: 10125–10130]. To identify the PS I component that is involved in the complex formation with the D44R/D47R plastocyanin, the kinetic efficiency of several PS I mutants, including a PsaF–PsaJ-less PS I and deletion mutants in the lumenal H and J loops of PsaB, were analyzed by laser flash absorption spectroscopy. The experimental data herein suggest that some of the negative charges at the H loop of PsaB are involved in electrostatic repulsions with mutant plastocyanin. Mutations in the J loop demonstrate that this region of PsaB is also critical. The interaction site of PS I is thus not as defined as first expected but much broader, thereby revealing how complex the evolution of intermolecular electron transfer mechanisms in photosynthesis has been. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
23.
Active pharmaceutical ingredient for biotechnology-based drugs, commonly known as drug substance (DS), is often stored frozen for longer shelf-life. Freezing DS enhances stability by slowing down reaction rates that lead to protein instability, minimizes the risk of microbial growth, and eliminates the risk of transport-related stress. High density polyethylene bottles are commonly used for storing monoclonal antibody DS due to good mechanical stress/strain resistant properties even at low temperatures. Despite the aforementioned advantages for frozen storage of DS, this is not devoid of risks. Proteins are known to undergo ice-water surface denaturation, cryoconcentration, and cold denaturation during freezing. A systematic investigation was performed to better understand the protein and solute distribution along with potential of aggregate formation during freeze and thaw process. A significant solute and protein concentration gradient was observed for both frozen and thawed DS bottles. In case of thawed DS, cryoconcentration was localized in the bottom layer and a linear increase in concentration as a function of liquid depth was observed. On the other hand, for frozen DS, a "bell shaped" cryoconcentration distribution was observed between the bottom layers and centre position. A cryoconcentration of almost three-fold was observed for frozen DS in the most concentrated part when freezing was conducted at -20 and -40 °C and 2.5-fold cryoconcentration was observed in the thawed DS before mixing. The information obtained in this study is critical to design freeze thaw experiments, storage condition determination, and process improvement in manufacturing environment.  相似文献   
24.
Capturing cancer cells using aptamer-immobilized square capillary channels   总被引:1,自引:0,他引:1  
We report a simple square capillary-based cell affinity chromatography device that utilizes a coating of aptamers for selective capture of target cancer cells from a flowing suspension. The device consists of a square capillary with an inner diameter of roughly five cell diameters, connected via Teflon tubing to a syringe. Aptamers are immobilized on the inner surface of the capillary through biotin-avidin chemistry, the extent of which can be controlled by adjusting the aptamer concentration. Introduction of different cell types into separate devices, as well as mixtures of target and non-target cells, demonstrated that aptamer-target cells can be captured in significantly higher concentrations compared to non-target cells. Once optimized, 91.1 ± 3.5% capture efficiency of target leukemia cells was reported, as well as 97.2 ± 2.8% and 83.6 ± 5.8% for two different colon cancer cell lines. In addition, cells captured in the device were imaged, and the square capillary exhibited better optical properties than standard cylindrical capillaries, leading to the detection of leukemia cells in blood samples. Compared to current microfluidic cell affinity devices, this capture device requires no complicated design or fabrication steps. By providing a simple means of detecting and imaging cancer cells in the blood, this work has potential to directly assist clinicians in determining disease prognosis and measuring therapeutic response.  相似文献   
25.
26.
Matrix metalloproteinases (MMPs) are suggested to play a critical role in extracellular matrix degradation and remodeling during inflammation and wound healing processes. However, the role of MMPs in indomethacin-induced gastric ulcer and its healing process are not clearly understood. This study is aimed at determining the regulation of MMP-9 and -2 activities in indomethacin-induced acute gastric ulceration and healing. Indomethacin-ulcerated stomach extracts exhibit significant up-regulation of pro-MMP-9 (92 kDa) activity and moderate reduction of MMP-2 activity, which strongly correlate with indomethacin dose and severity of ulcer. The anti-inflammatory and antioxidant properties of curcumin, an active component of turmeric, suggest that curcumin may exert antiulcer activity through scavenging reactive oxygen species, by regulating MMP activity, or both. To test these possibilities, the effect of curcumin in indomethacin-induced gastric ulcer is examined by biochemical and histological methods. The results show that curcumin exhibits potent antiulcer activity in acute ulcer in rat model by preventing glutathione depletion, lipid peroxidation, and protein oxidation. Denudation of epithelial cells during damage of gastric lumen is reversed by curcumin through re-epithelialization. Furthermore, both oral and intraperitoneal administration of curcumin blocks gastric ulceration in a dose-dependent manner. It accelerates the healing process and protects gastric ulcer through attenuation of MMP-9 activity and amelioration of MMP-2 activity. Omeprazole, an established antiulcer drug does not inhibit MMP-9 while protecting indomethacin-induced gastric ulcer. We conclude that antiulcer activity of curcumin is primarily attributed to MMP-9 inhibition, one of the major path-ways of ulcer healing.  相似文献   
27.
Nanosecond absorption dynamics at approximately 685 nm after excitation of photosystem I (PS I) from Synechocystis sp. PCC 6803 is consistent with electrochromic shift of absorption bands of the Chl a pigments in the vicinity of the secondary electron acceptor A(1). Based on experimental optical data and structure-based simulations, the effective local dielectric constant has been estimated to be between 3 and 20, which suggests that electron transfer in PS I is accompanied by considerable protein relaxation. Similar effective dielectric constant values have been previously observed for the bacterial photosynthetic reaction center and indicate that protein reorganization leading to effective charge screening may be a necessary structural property of proteins that facilitate the charge transfer function. The data presented here also argue against attributing redmost absorption in PS I to closely spaced antenna chlorophylls (Chls) A38 and A39, and suggest that optical transitions of these Chls, along with that of connecting chlorophyll (A40) lie in the range 680-695 nm.  相似文献   
28.
29.
The interaction between surface components on the invading pathogen and host cells such as platelets plays a key role in the regulation of endovascular infections. However, the mechanisms mediating Staphylococcus aureus binding to platelets under shear remain largely unknown. This study was designed to investigate the kinetics and molecular requirements of platelet-S. aureus interactions in bulk suspensions subjected to a uniform shear field. Hydrodynamic shear-induced collisions augment platelet-S. aureus binding, which is further potentiated by platelet activation with stromal derived factor-1beta. Peak adhesion efficiency occurs at low shear (100 s(-1)) and decreases with increasing shear. The molecular interaction of platelet alpha(IIb)beta(3) with bacterial clumping factor A through fibrinogen bridging is necessary for stable bacterial binding to activated platelets under shear. Although this pathway is sufficient at low shear (相似文献   
30.
Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号