首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   21篇
  2022年   6篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   6篇
  2016年   3篇
  2015年   7篇
  2014年   9篇
  2013年   13篇
  2012年   9篇
  2011年   20篇
  2010年   7篇
  2009年   5篇
  2008年   23篇
  2007年   16篇
  2006年   13篇
  2005年   13篇
  2004年   12篇
  2003年   15篇
  2002年   7篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1971年   4篇
  1968年   1篇
  1966年   1篇
排序方式: 共有243条查询结果,搜索用时 203 毫秒
171.
We describe a chemical printer that uses piezoelectric pulsing for rapid, accurate, and non-contact microdispensing of fluid for proteomic analysis of immobilized protein macroarrays. We demonstrate protein digestion and peptide mass fingerprinting analysis of human plasma and platelet proteins direct from a membrane surface subsequent to defined microdispensing of trypsin and matrix solutions, hence bypassing multiple liquid-handling steps. Detection of low abundance, alkaline proteins from whole human platelet extracts has been highlighted. Membrane immobilization of protein permits archiving of samples pre-/post-analysis and provides a means for subanalysis using multiple chemistries. This study highlights the ability to increase sequence coverage for protein identification using multiple enzymes and to characterize N-glycosylation modifications using a combination of PNGase F and trypsin. We also demonstrate microdispensing of multiple serum samples in a quantitative microenzyme-linked immunosorbent assay format to rapidly screen protein macroarrays for pathogen-derived antigens. We anticipate the chemical printer will be a major component of proteomic platforms for high throughput protein identification and characterization with widespread applications in biomedical and diagnostic discovery.  相似文献   
172.
The formation of biocomposite films of the pharmaceutically important enzyme penicillin G acylase (PGA) and fatty lipids under enzyme-friendly conditions is described. The approach involves a simple beaker-based diffusion protocol wherein the enzyme diffuses into the lipid film during immersion in the enzyme solution, thereby leading to the formation of a biocomposite film. The incorporation of the enzyme in both cationic as well as anionic lipids suggests the important role of secondary interactions such as hydrophobic and hydrogen bonding in the enzyme immobilization process. The kinetics of formation of the enzyme-lipid biocomposites has been studied by quartz crystal microgravimentry (QCM) measurements. The stability of the enzyme in the lipid matrix was confirmed by Fourier transform infrared spectroscopy (FTIR) and biocatalytic activity measurements. Whereas the biological activity of the lipid-immobilized enzyme was marginally higher than that of the free enzyme, the biocomposite film exhibited increased thermal/temporal stability. Particularly exciting was the observation that the biocomposite films could be reused in biocatalysis reactions without significant loss in activity, which indicates potentially exciting biomedical/industrial application of these films.  相似文献   
173.
B Raboy  H A Parag    R G Kulka 《The EMBO journal》1986,5(5):863-869
[125I]Ubiquitin introduced into permeabilized hepatoma tissue culture (HTC) cells rapidly forms conjugates with endogenous proteins. A characteristic pattern of low mol. wt conjugates is obtained which includes the ubiquitinated histone, uH2A, and unknown molecular species with MrS of 14, 23, 26 (two bands) and 29 kd. A broad spectrum of higher mol. wt conjugates is also produced. The formation of all conjugates is absolutely dependent on ATP, and upon depletion of ATP they are rapidly broken down. The 14, 23 and 29 kd species are found in all subcellular fractions examined. uH2A is located exclusively in the nuclear fraction. The pair of 26 kd bands is specifically associated with the ribosome fraction. A considerable percentage of the higher mol. wt conjugates sediments with the small particle (100,000 g) fraction in the ultracentrifuge but is solubilized with deoxycholate, indicating that there are many membrane-associated conjugates. The pattern of ubiquitin conjugation in interphase and metaphase cells was compared. The incorporation of ubiquitin into uH2A was markedly reduced in metaphase cells whereas its incorporation into other low mol. wt conjugates and into high mol. wt conjugates was affected slightly, if at all. This shows that the known decrease of uH2A levels in metaphase is due to a specific effect on histone ubiquitination and not to a general decrease in ubiquitination activity or increase of isopeptidase activity. Changes in the levels of uH2A during mitosis measured by immunoblotting were similar to those estimated in permeabilized cells. These experiments indicate that permeabilized cells provide a useful approach to the study of rapidly turning over ubiquitin conjugates in mammalian cells.  相似文献   
174.
Microtubules have a persistence length of the order of millimeters in vitro, but inside cells they bend over length scales of microns. It has been proposed that polymerization forces bend microtubules in the vicinity of the cell boundary or other obstacles, yet bends develop even when microtubules are polymerizing freely, unaffected by obstacles and cell boundaries. How these bends are formed remains unclear. By tracking the motions of microtubules marked by photobleaching, we found that in LLC-PK1 epithelial cells local bends develop primarily by plus-end directed transport of portions of the microtubule contour towards stationary locations (termed pinning points) along the length of the microtubule. The pinning points were transient in nature, and their eventual release allowed the bends to relax. The directionality of the transport as well as the overall incidence of local bends decreased when dynein was inhibited, while myosin inhibition had no observable effect. This suggests that dynein generates a tangential force that bends microtubules against stationary pinning points. Simulations of microtubule motion and polymerization accounting for filament mechanics and dynein forces predict the development of bends of size and shape similar to those observed in cells. Furthermore, simulations show that dynein-generated bends at a pinning point near the plus end can cause a persistent rotation of the tip consistent with the observation that bend formation near the tip can change the direction of microtubule growth. Collectively, these results suggest a simple physical mechanism for the bending of growing microtubules by dynein forces accumulating at pinning points.  相似文献   
175.

Background

Non-ischemic fibrosis (NIF) on cardiac magnetic resonance (CMR) has been linked to poor prognosis, but its association with adverse right ventricular (RV) remodeling is unknown. This study examined a broad cohort of patients with RV dysfunction, so as to identify relationships between NIF and RV remodeling indices, including RV pressure load, volume and wall stress.

Methods and Results

The population comprised patients with RV dysfunction (EF<50%) undergoing CMR and transthoracic echo within a 14 day (5±3) interval. Cardiac structure, function, and NIF were assessed on CMR. Pulmonary artery systolic pressure (PASP) was measured on echo. 118 patients with RV dysfunction were studied, among whom 47% had NIF. Patients with NIF had lower RVEF (34±10 vs. 39±9%; p = 0.01) but similar LVEF (40±21 vs. 39±18%; p = 0.7) and LV volumes (p = NS). RV wall stress was higher with NIF (17±7 vs. 12±6 kPa; p<0.001) corresponding to increased RV end-systolic volume (143±79 vs. 110±36 ml; p = 0.006), myocardial mass (60±21 vs. 53±17 gm; p = 0.04), and PASP (52±18 vs. 41±18 mmHg; p = 0.001). NIF was associated with increased wall stress among subgroups with isolated RV (p = 0.005) and both RV and LV dysfunction (p = 0.003). In multivariable analysis, NIF was independently associated with RV volume (OR = 1.17 per 10 ml, [CI 1.04–1.32]; p = 0.01) and PASP (OR = 1.43 per 10 mmHg, [1.14–1.81]; p = 0.002) but not RV mass (OR = 0.91 per 10 gm, [0.69–1.20]; p = 0.5) [model χ2 = 21; p<0.001]. NIF prevalence was higher in relation to PA pressure and RV dilation and was > 6-fold more common in the highest, vs. the lowest, common tertile of PASP and RV size (p<0.001).

Conclusion

Among wall stress components, NIF was independently associated with RV chamber dilation and afterload, supporting the concept that NIF is linked to adverse RV chamber remodeling.  相似文献   
176.
177.
The taxonomic position of a Gram-stain-negative, rod-shaped bacterial strain, designated PI11T, isolated from the rhizospheric sediment of Phragmites karka was characterized using a polyphasic approach. Strain PI11T could grow optimally at 1.0% NaCl concentration with pH 7.0 at 30°C and was positive for oxidase and catalase but negative for hydrolysis of starch, casein, and esculin ferric citrate. Phylogenetic analysis of 16S rRNA gene sequences indicated that the strain PI11T belonged to the genus Pseudomonas sharing the highest sequence similarities with Pseudomonas indoloxydans JCM 14246T (99.72%), followed by, Pseudomonas oleovorans subsp. oleovorans DSM 1045T (99.29%), Pseudomonas toyotomiensis JCM 15604T (99.15%), Pseudomonas chengduensis DSM 26382T (99.08%), Pseudomonas oleovorans subsp. lubricantis DSM 21016T (99.08%), and Pseudomonas alcaliphila JCM 10630T (99.01%). Experimental DNA-DNA relatedness between strain PI11T and P. indoloxydans JCM 14246T was 49.4%. The draft genome of strain PI11T consisted of 4,884,839 bp. Average nucleotide identity between the genome of strain PI11T and other closely related type strains ranged between 77.25–90.74%. The polar lipid pattern comprised of phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylcholine. The major (> 10%) cellular fatty acids were C18:1ω6c/ω7c, C16:1ω6c/ω7c, and C16:0. The DNA G + C content of strain PI11T was 62.4 mol%. Based on the results of polyphasic analysis, strain PI11T was delineated from other closely related type strains. It is proposed that strain PI11T represents represents a novel species of the genus Pseudomonas, for which the name Pseudomonas sediminis sp. nov. is proposed. The type strain is PI11T (= KCTC 42576T = DSMZ 100245T).  相似文献   
178.
Summary A mutation (rec) confering low mitotic recombination in a haploid of Aspergillus nidulans carrying the duplication I pab y adE8 bi +/IIdy y + adE20 bi was tested for its effect on mitotic recombination in diploids and on meiosis. The method involved the building of strains that on mating in pairwise combinations can give heterokaryons and diploids homozygous for different sets of chromosomes coming from the rec strain. Three such diploids were tested so far, in which no effect on recombination frequency was found; it means that if rec affects diploids it is not located on linkage groups III, IV, V, or VII. The strains for building the other diploids have been constructed. The construction of a diploid homozygous for linkage group I from the rec parent required a transfer of the duplicated segment y + adE20 bi from chromosome II to its original place on chromosome I. A method for this transfer involving two-step selection is described.A mutation (pop) confering very high mitotic-recombination frequency was found to have a profound effect on crossing over in diploids: all the asexual spores show at least one crossing-over event. The high recombination could be due to the effect of pop on chromosome exchange per se, or on chromosome pairing and thus indirectly on exchange. A test designed to support the second hypothesis failed to supply this support. Since there are other results supporting the first hypothesis it is concluded that pop has a direct effect on mitotic crossing over. The possible uses of pop mutants for mitotic genetic mapping, and for testing whether mitotic crossing over is a special case of sister-strand exchange, are discussed.  相似文献   
179.
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号