首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   16篇
  417篇
  2023年   2篇
  2022年   8篇
  2021年   13篇
  2020年   2篇
  2019年   7篇
  2018年   8篇
  2017年   7篇
  2016年   14篇
  2015年   21篇
  2014年   26篇
  2013年   22篇
  2012年   37篇
  2011年   42篇
  2010年   27篇
  2009年   11篇
  2008年   35篇
  2007年   25篇
  2006年   27篇
  2005年   16篇
  2004年   21篇
  2003年   20篇
  2002年   14篇
  2001年   4篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1985年   2篇
排序方式: 共有417条查询结果,搜索用时 15 毫秒
71.
Resistance to gentamicin, amikacin and kanamycin was screened in 270 clinical isolates of Enterobacteriaceae originated from April 19 to May 19, 2010 in a regular hospital in Warsaw, Poland. Most of the isolated bacteria were considered pathogenic. Nineteen isolates (7%) were simultaneously resistant to two or three of the tested aminoglycosides. MICs of the three aminoglycosides ranged form 128 to 1024 mcg/ml for six isolates. These isolates were suspected to produce 16S rRNA methylase. Genes encoding for three methylases reported in Europe: ArmA, RmtB and RmtC were searched by PCR. The armA gene was detected in all of the six isolates. This group encompassed Enterobacter cloacae (n=4), Klebsiella pneumoniae (n=1) and Proteus mirabilis (n=1). Five isolates of this group carried the bla(CAX-M) gene for CTX-M type ESBL. The remaining isolate E. cloacae DM0340 was ESBL negative and lacked bla(CRX-M) that may suggest an altered genetic environment of the armA gene in this isolate. Our results showed that 2.2% of the tested isolates produced 16S rRNA methylase ArmA. This finding may argue for a high incidence of ArmA producing Enterobacteriaceae in Poland when compared to reports from other European countries.  相似文献   
72.
Cosmeceutical field, which merges cosmetics and pharmaceuticals, is nowadays a highly investigated research area, because a scientific demonstration of the claimed bioactivity of new cosmeceutical ingredients is increasingly requested. In fact, an aspect differentiating traditional cosmetics from cosmeceuticals is the identification and characterization of the active ingredients and demonstrating its efficacy in the claimed activity. An interesting group of bioactive cosmeceutical ingredients are peptides, which due to their particular properties, meets most of the requirements presented by the cosmeceutical industry when composing new formulas. In this context, beside bioactivity, two additional aspects have been recently considered, when dealing with peptides as cosmeceutical ingredients: bioavailability and stability. We describe herein novel methods applied in order to enhance peptides skin-penetration and stability, reviewing both scientific articles and patents, issued in the cosmeceutical arena.  相似文献   
73.
The members of p90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases are downstream effectors of MAPK/ERK pathway that regulate diverse cellular processes including cell growth, proliferation and survival. In carcinogenesis, RSKs are thought to modulate cell motility, invasion and metastasis. Herein, we have studied an involvement of RSKs in FGF2/FGFR2-driven behaviours of mammary epithelial and breast cancer cells. We found that both silencing and inhibiting of FGFR2 attenuated phosphorylation of RSKs, whereas FGFR2 overexpression and/or its stimulation with FGF2 enhanced RSKs activity. Moreover, treatment with ERK, Src and p38 inhibitors revealed that p38 kinase acts as an upstream RSK2 regulator. We demonstrate for the first time that in FGF2/FGFR2 signalling, p38 but not MEK/ERK, indirectly activated RSK2 at Tyr529, which facilitated phosphorylation of its other residues (Thr359/Ser363, Thr573 and Ser380). In contrast to FGF2-triggered signalling, inhibition of p38 in the EGF pathway affected only RSK2-Tyr529, without any impact on the remaining RSK phosphorylation sites. p38-mediated phosphorylation of RSK2-Tyr529 was crucial for the transactivation of residues located at kinase C-terminal domain and linker-region, specifically, in the FGF2/FGFR2 signalling pathway. Furthermore, we show that FGF2 promoted anchorage-independent cell proliferation, formation of focal adhesions and cell migration, which was effectively abolished by treatment with RSKs inhibitor (FMK). These indicate that RSK2 activity is indispensable for FGF2/FGFR2-mediated cellular effects. Our findings identified a new FGF2/FGFR2-p38-RSK2 pathway, which may play a significant role in the pathogenesis and progression of breast cancer and, hence, may present a novel therapeutic target in the treatment of FGFR2-expressing tumours.  相似文献   
74.
Hyperhydricity can cause significant economic loss for the micro-propagation industry that produces blueberry. In order to predict and control the occurrence of hyperhydricity, better understanding of the anatomical and physiological features of hyperhydric plantlets is required. In this study, we investigated the ultrastructural and physiological changes associated with hyperhydric blueberry plantlets. Compared to normal plantlets, hyperhydric plantlets exhibited reduced cell wall thickness, damaged membrane and guard cell structure, decreased number of mitochondria and starch granule, higher cell vacuolation, more intercellular spaces, and collapse of vascular tissues. In addition, excessive accumulation of reactive oxygen species (ROS) and ethylene, decreased stomatal aperture and water loss, as well as abnormity of stomatal movement were also evident in the hyperhydric plantlets. The results suggested that excessive ethylene and ROS produced in response to the stress arising from in vitro culture could lead to abnormal stomatal closure, causing the accumulation of water in the tissues. This would lead to subsequent induction of oxidative stress (due to hypoxia) and cell damage, especially guard cell structure, eventually giving rise to the symptoms of hyperhydricity. Reducing the content of ethylene and ROS, and protecting the structure and function of the stomata could be considered as potential strategies for inhibiting hyperhydricity or restoring the hyperhydric plants to their normal state.  相似文献   
75.
The estuarine bivalves Limecola balthica and Mya arenaria are common inhabitants of marine soft bottom habitats in the Northern Hemisphere. Both species are able to live under a wide range of environmental conditions including variable salinity. However, in L. balthica there is high genetic variability, and populations are often genetically adapted to local conditions. By contrast, genetic diversity in M. arenaria is low across the species’ geographic range, which attests to acclimatization to different conditions. We hypothesized that individuals of M. arenaria should perform better under osmotic stress. We tested this hypothesis by performing a 5‐week experiment that exposed individuals of both clam species to hypo‐ and hyperosmotic conditions. A multiple biomarker approach that included physiological, biochemical, and histological markers was used to assess bivalve performance. Exposure to the different salinities induced biological responses that particularly affected respiratory activity in both species tested, but these responses were much more pronounced in individuals of L. balthica. The results confirmed the hypothesis that the phenotypic plasticity of M. arenaria was more pronounced and reflected a different strategy of adapting to heterogeneous habitats.  相似文献   
76.
Purα is a nucleic acid-binding protein with DNA-unwinding activity, which has recently been shown to have a role in the cellular response to DNA damage. We have investigated the function of Purα in Ultraviolet-C (UVC) radiation-induced DNA damage and nucleotide excision repair (NER). Mouse embryo fibroblasts from PURA-/- knockout mice, which lack Purα, showed enhanced sensitivity to UVC irradiation as assessed by assays for cell viability and clonogenicity compared to Purα positive control cultures. In reporter plasmid reactivation assays to measure the removal of DNA adducts induced in vitro by UVC, the Purα-negative cells were less efficient in DNA damage repair. Purα-negative cells were also more sensitive to UVC-induced DNA damage measured by Comet assay and showed a decreased ability to remove UVC-induced cyclobutane pyrimidine dimers. In wild-type mouse fibroblasts, expression of Purα is induced following S-phase checkpoint activation by UVC in a similar manner to the NER factor TFIIH. Moreover, co-immunoprecipitation experiments showed that Purα physically associates with TFIIH. Thus, Purα has a role in NER and the repair of UVC-induced DNA damage.Key words: purα, ultraviolet radiation, DNA damage, DNA repair, nucleotide excision repair, TFIIH  相似文献   
77.
The explosive growth in biological data in recent years has led to the development of new methods to identify DNA sequences. Many algorithms have recently been developed that search DNA sequences looking for unique DNA sequences. This paper considers the application of the Burrows-Wheeler transform (BWT) to the problem of unique DNA sequence identification. The BWT transforms a block of data into a format that is extremely well suited for compression. This paper presents a time-efficient algorithm to search for unique DNA sequences in a set of genes. This algorithm is applicable to the identification of yeast species and other DNA sequence sets.  相似文献   
78.
Reward prediction errors (RPEs) and risk preferences have two things in common: both can shape decision making behavior, and both are commonly associated with dopamine. RPEs drive value learning and are thought to be represented in the phasic release of striatal dopamine. Risk preferences bias choices towards or away from uncertainty; they can be manipulated with drugs that target the dopaminergic system. Based on the common neural substrate, we hypothesize that RPEs and risk preferences are linked on the level of behavior as well. Here, we develop this hypothesis theoretically and test it empirically. First, we apply a recent theory of learning in the basal ganglia to predict how RPEs influence risk preferences. We find that positive RPEs should cause increased risk-seeking, while negative RPEs should cause risk-aversion. We then test our behavioral predictions using a novel bandit task in which value and risk vary independently across options. Critically, conditions are included where options vary in risk but are matched for value. We find that our prediction was correct: participants become more risk-seeking if choices are preceded by positive RPEs, and more risk-averse if choices are preceded by negative RPEs. These findings cannot be explained by other known effects, such as nonlinear utility curves or dynamic learning rates.  相似文献   
79.
Deep brain stimulation (DBS) is a well-established treatment option for a variety of neurological disorders, including Parkinson’s disease and essential tremor. The symptoms of these disorders are known to be associated with pathological synchronous neural activity in the basal ganglia and thalamus. It is hypothesised that DBS acts to desynchronise this activity, leading to an overall reduction in symptoms. Electrodes with multiple independently controllable contacts are a recent development in DBS technology which have the potential to target one or more pathological regions with greater precision, reducing side effects and potentially increasing both the efficacy and efficiency of the treatment. The increased complexity of these systems, however, motivates the need to understand the effects of DBS when applied to multiple regions or neural populations within the brain. On the basis of a theoretical model, our paper addresses the question of how to best apply DBS to multiple neural populations to maximally desynchronise brain activity. Central to this are analytical expressions, which we derive, that predict how the symptom severity should change when stimulation is applied. Using these expressions, we construct a closed-loop DBS strategy describing how stimulation should be delivered to individual contacts using the phases and amplitudes of feedback signals. We simulate our method and compare it against two others found in the literature: coordinated reset and phase-locked stimulation. We also investigate the conditions for which our strategy is expected to yield the most benefit.  相似文献   
80.
Isu, the scaffold for assembly of Fe-S clusters in the yeast mitochondrial matrix, is a substrate protein for the Hsp70 Ssq1 and the J-protein Jac1 in vitro. As expected for an Hsp70-substrate interaction, the formation of a stable complex between Isu and Ssq1 requires Jac1 in the presence of ATP. Here we report that a conserved tripeptide, PVK, of Isu is critical for interaction with Ssq1 because amino acid substitutions in this tripeptide inhibit both the formation of the Isu-Ssq1 complex and the ability of Isu to stimulate the ATPase activity of Ssq1. These biochemical defects correlate well with the growth defects of cells expressing mutant Isu proteins. We conclude that the Ssq1-Isu substrate interaction is critical for Fe-S cluster biogenesis in vivo. The ability of Jac1 and mutant Isu proteins to cooperatively stimulate the ATPase activity of Ssq1 was also measured. Increasing the concentration of Jac1 and mutant Isu together but not individually partially overcame the effect of the reduced affinity of the Isu mutant proteins for Ssq1. These results, along with the observation that overexpression of Jac1 was able to suppress the growth defect of an ISU mutant, support the hypothesis that Isu is "targeted" to Ssq1 by Jac1, with a preformed Jac1-Isu complex interacting with Ssq1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号