首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1106篇
  免费   81篇
  国内免费   1篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   7篇
  2018年   6篇
  2017年   8篇
  2016年   16篇
  2015年   34篇
  2014年   23篇
  2013年   62篇
  2012年   47篇
  2011年   56篇
  2010年   30篇
  2009年   39篇
  2008年   56篇
  2007年   56篇
  2006年   44篇
  2005年   51篇
  2004年   56篇
  2003年   46篇
  2002年   62篇
  2001年   46篇
  2000年   51篇
  1999年   43篇
  1998年   16篇
  1997年   13篇
  1996年   15篇
  1995年   12篇
  1994年   8篇
  1993年   17篇
  1992年   18篇
  1991年   20篇
  1990年   17篇
  1989年   12篇
  1988年   16篇
  1987年   21篇
  1986年   14篇
  1985年   14篇
  1984年   11篇
  1983年   19篇
  1982年   8篇
  1981年   8篇
  1980年   9篇
  1979年   9篇
  1978年   9篇
  1977年   7篇
  1976年   12篇
  1975年   6篇
  1974年   6篇
  1968年   5篇
排序方式: 共有1188条查询结果,搜索用时 15 毫秒
91.
Hepatitis C virus (HCV) NS5B protein has been shown to have RNA-dependent RNA polymerase (RdRp) activity by itself and is a key enzyme involved in viral replication. Using analyses with the yeast two-hybrid system and in vitro binding assay, we found that human eukaryotic initiation factor 4AII (heIF4AII), which is a component of the eIF4F complex and RNA-dependent ATPase/helicase, interacted with NS5B protein. These two proteins were shown to be partially colocalized in the perinuclear region. The binding site in HCV NS5B protein was localized within amino acid residues 495 to 537 near the C terminus. Since eIF4A has a helicase activity and functions in a bidirectional manner, the binding of HCV NS5B protein to heIF4AII raises the possibility that heIF4AII facilitates the genomic RNA synthesis of NS5B protein by unwinding the secondary structure of the HCV genome and is a host component of viral replication complex.  相似文献   
92.
Although a subpopulation of mRNAs has been identified as translocated to the dendrites or the synaptic regions of neurons, the translocational mechanism has not been elucidated. To find mRNAs enriched in synapses, we compared the synaptosomal mRNAs with those from whole forebrain using differential display (DD). We cloned one of these mRNAs, which encoded a novel 31 kDa protein (PMES-2). PMES-2 mRNA was specifically transcribed in the brain and was present in the dendrites of the hippocampal neurons. PMES-2 protein was partly localized in the postsynaptic density. Although this protein is very similar to human NABC1 protein, its function is still unknown.  相似文献   
93.
Changes in synaptic efficacy are considered necessary for learning and memory. Recently, it has been suggested that estrogen controls synaptic function in the central nervous system. However, it is unclear how estrogen regulates synaptic function in central nervous system neurons. We found that estrogen potentiated presynaptic function in cultured hippocampal neurons. Chronic treatment with estradiol (1 or 10 nm) for 24 h significantly increased a high potassium-induced glutamate release. The estrogen-potentiated glutamate release required the activation of both phosphatidylinositol 3-kinase and MAPK.The high potassium-evoked release with or without estradiol pretreatment was blocked by tetanus neurotoxin, which is an inhibitor of exocytosis. In addition, the reduction in intensity of FM1-43 fluorescence, which labeled presynaptic vesicles, was enhanced by estradiol, suggesting that estradiol potentiated the exocytotic mechanism. Furthermore, protein levels of synaptophysin, syntaxin, and synaptotagmin (synaptic proteins, respectively) were up-regulated by estradiol. We confirmed that the up-regulation of synaptophysin was blocked by the MAPK pathway inhibitor, U0126. These results suggested that estrogen enhanced presynaptic function through the up-regulated exocytotic system. In this study, we propose that estrogen reinforced excitatory synaptic transmission via potentiated-glutamate release from presynaptic sites.  相似文献   
94.
95.
Pseudomonas sp. 61-3 accumulated a blend of poly(3-hydroxybutyrate) [P(3HB)] homopolymer and a random copolymer consisting of 3-hydroxyalkanoate (3HA) units of 4–12 carbon atoms. The genes encoding β-ketothiolase (PhbARe) and NADPH-dependent acetoacetyl-CoA reductase (PhbBRe) from Ralstoniaeutropha were expressed under the control of promoters for Pseudomonas sp. 61-3 pha locus or R. eutropha phb operon together with phaC1 Ps gene (PHA synthase 1 gene) from Pseudomonas sp. 61-3 in PHA-negative mutants P. putida GPp104 and R. eutropha PHB4 to produce copolyesters [P(3HB-co-3HA)] consisting of 3HB and medium-chain-length 3HA units of 6–12 carbon atoms. The introduction of the three genes into GPp104 strain conferred the ability to synthesize P(3HB-co-3HA) with relatively high 3HB compositions (up to 49 mol%) from gluconate and alkanoates, although 3HB units were not incorporated at all or at a very low fraction (3 mol%) into copolyesters by the strain carrying phaC1 Ps gene only. In addition, recombinant strains of R. eutropha PHB4 produced P(3HB-co-3HA) with higher 3HB fractions from alkanoates and plant oils than those from recombinant GPp104 strains. One of the recombinant strains, R. eutropha PHB4/pJKSc46-pha, in which all the genes introduced were expressed under the control of the native promoter for Pseudomonas sp. 61-3 pha locus, accumulated P(3HB-co-3HA) copolyester with a very high 3HB fraction (85 mol%) from palm oil. The nuclear magnetic resonance analyses showed that the copolyesters obtained here were random copolymers of 3HB and 3HA units. Received: 12 July 1999 / Received revision: 1 October 1999 / Accepted: 2 October 1999  相似文献   
96.
97.
98.
A 4.7 kb chick cDNA clone that coded for the novel muscle-derived protein, MDP77, was isolated from a cDNA library of the denervated crus muscles using an antibody which inhibited the neurite outgrowth activity. MDP77 consisted of 676 aa with a calculated molecular mass of 77 k. The deduced amino acid sequence exhibited an extended coiled-coil domain and a leucine zipper motif. A recombinant protein promoted the neurite-outgrowth from the cultured chick neurons of the spinal cord in a dose-dependent manner. Northern blotting and in situ hybridization revealed that MDP77 was predominantly expressed in the cardiac and the skeletal muscles. In the COS-7 cells transfected with the cDNA of the epitope-tagged MDP77, the expressed protein was detected in the culture medium, suggesting that the MDP77 was secreted.  相似文献   
99.
Previously, a rodent cDNA encoding the third member of the Akt/PKB family of serine/threonine kinases was cloned. We have now cloned the human homolog of this cDNA, and we have used this clone to map the AKT3 gene to human chromosome 1q44 by fluorescence in situ hybridization (FISH). We have also mapped the rodent homologs of AKT3 to rat chromosome 13q24-->q26 and mouse chromosome 1H4-6 by FISH.  相似文献   
100.
Carboxylated poly(styrene/acrylamide) (P(St/AAm)-H) microspheres with different acrylamide contents were prepared by emulsifier-free emulsion polymerization. Thermus thermophilus holo-chaperonin (cpn) was covalently immobilized onto these microspheres with high yield. The T. thermophilus holo-cpn-immobilized microspheres were used for refolding of guanidine hydrochloride (Gdn-HCl)-denatured enzymes and showed sufficiently high ability to facilitate refolding of Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase (G6PD) and pig heart lactate dehydrogenase (LDH) at 30 degrees C and Bacillus stearothermophilus LDH at 60 degrees C. The specific ability of T. thermophilus holo-cpn-immobilized microspheres increased with increasing immobilization amount and reached plateau at around 10-15 mg/m(2). When the immobilization amounts of T. thermophilus holo-cpn were approximately 10 mg/m(2), the microspheres retained sufficiently high ability to facilitate protein refolding during repeated use. Therefore, the P(St/AAm)-H microspheres on which approximately 10 mg/m(2) of T. thermophilus holo-cpn is immobilized are very effective for refolding of various (Gdn-HCl)-denatured enzymes over a wide temperature range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号