首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   507篇
  免费   33篇
  2022年   6篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   10篇
  2017年   10篇
  2016年   17篇
  2015年   17篇
  2014年   23篇
  2013年   20篇
  2012年   33篇
  2011年   27篇
  2010年   21篇
  2009年   17篇
  2008年   26篇
  2007年   32篇
  2006年   37篇
  2005年   29篇
  2004年   44篇
  2003年   35篇
  2002年   31篇
  2001年   2篇
  2000年   6篇
  1999年   8篇
  1998年   7篇
  1997年   9篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有540条查询结果,搜索用时 21 毫秒
61.
Synphilin-1 is an alpha-synuclein binding protein that is involved in the pathogenesis of Parkinson's disease. The present study investigated the phospholipid-binding capacity of Synphilin-1. The C-terminus of Synphilin-1 was found to selectively bind to acidic phospholipids, including phosphatidic acid, phosphatidylserine, and phosphatidylglycerol, but not to naturally charged phospholipids. Synphilin-1 was targeted to cytoplasmic lipid droplets in mammalian cells. The amino acid sequence 610-640 was found to represent the primary determinant site for phospholipid binding. Moreover, the R621C mutation identified in Parkinson's disease abolished Synphilin-1 association with lipid droplets. The lipophilicity of Synphilin-1 might prove relevant to its physiologic function.  相似文献   
62.
63.
DNA polymerase IV (Pol IV) is one of three translesion polymerases in Escherichia coli. A mass spectrometry study revealed that single-stranded DNA-binding protein (SSB) in lysates prepared from exponentially-growing cells has a strong affinity for column-immobilized Pol IV. We found that purified SSB binds directly to Pol IV in a pull-down assay, whereas SSBΔC8, a mutant protein lacking the C-terminal tail, failed to interact with Pol IV. These results show that the interaction between Pol IV and SSB is mediated by the C-terminal tail of SSB. When polymerase activity was tested on an SSBΔC8-coated template, we observed a strong inhibition of Pol IV activity. Competition experiments using a synthetic peptide containing the amino acid sequence of SSB tail revealed that the chain-elongating capacity of Pol IV was greatly impaired when the interaction between Pol IV and SSB tail was inhibited. These results demonstrate that Pol IV requires the interaction with the C-terminal tail of SSB to replicate DNA efficiently when the template ssDNA is covered with SSB. We speculate that at the primer/template junction, Pol IV interacts with the tail of the nearest SSB tetramer on the template, and that this interaction allows the polymerase to travel along the template while disassembling SSB.  相似文献   
64.
A real-time PCR procedure targeting the gene of the molecular cochaperon DnaJ (dnaJ) was developed for specific detection of strains belonging to the Enterobacter cloacae group. The inclusivity and exclusivity of the real-time PCR assay were assessed with seven reference strains of E.?cloacae, 12 other Enterobacter species and 41 non-Enterobacter strains. Inclusivity as well as exclusivity of the duplex real-time PCR was 100%. In contrast, resolution of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was inadequate for delineation of Enterobacter asburiae, Enterobacter hormaechei, Enterobacter kobei and Enterobacter ludwigii from E.?cloacae. Eleven of 56 (20%) clinical isolates of the E.?cloacae group could not be clearly identified as a certain species using MALDI-TOF MS. In summary, the combination of MALDI-TOF MS with the E.?cloacae-specific duplex real-time PCR is an appropriate method for identification of the six species of the E.?cloacae complex.  相似文献   
65.
Increasing age is the most robust predictor of greater malignancy and treatment resistance in human gliomas. However, the adverse association of clinical course with aging is rarely considered in animal glioma models, impeding delineation of the relative importance of organismal versus progenitor cell aging in the genesis of glioma malignancy. To address this limitation, we implanted transformed neural stem/progenitor cells (NSPCs), the presumed cells of glioma origin, from 3‐ and 18‐month‐old mice into 3‐ and 20‐month host animals. Transplantation with progenitors from older animals resulted in significantly shorter (P ≤ 0.0001) median survival in both 3‐month (37.5 vs. 83 days) and 20‐month (38 vs. 67 days) hosts, indicating that age‐dependent changes intrinsic to NSPCs rather than host animal age accounted for greater malignancy. Subsequent analyses revealed that increased invasiveness, genomic instability, resistance to therapeutic agents, and tolerance to hypoxic stress accompanied aging in transformed NSPCs. Greater tolerance to hypoxia in older progenitor cells, as evidenced by elevated HIF‐1 promoter reporter activity and hypoxia response gene (HRG) expression, mirrors the upregulation of HRGs in cohorts of older vs. younger glioma patients revealed by analysis of gene expression databases, suggesting that differential response to hypoxic stress may underlie age‐dependent differences in invasion, genomic instability, and treatment resistance. Our study provides strong evidence that progenitor cell aging is responsible for promoting the hallmarks of age‐dependent glioma malignancy and that consideration of progenitor aging will facilitate development of physiologically and clinically relevant animal models of human gliomas.  相似文献   
66.
67.
68.
69.
Neurotrophins, such as the nerve growth factor (NGF), play an essential role in the growth, development, survival and functional maintenance of neurons in the central and peripheral systems. They also prevent neuronal cell death under various stressful conditions, such as ischemia and neurodegenerative disorders. NGF induces cell differentiation and neurite outgrowth by binding with and activating the NGF receptor tyrosine kinase followed by activation of a variety of signaling cascades. We have investigated the NGF-dependent neuritogenesis enhancer potential of a food-derived small molecule contained in Brassica vegetables and identified the protein tyrosine phosphatase (PTP) 1B as a key regulator of the NGF receptor-initiated signal transduction. Based on an extensive screening of Brassica vegetable extracts for the neuritogenic-promoting activity in the rat pheochromocytoma cell line PC12, we found the Japanese horseradish, wasabi (Wasabia japonica, syn. Eutrema wasabi), as the richest source and identified 6-methylsulfinylhexyl isothiocyanate (6-HITC), an analogue of sulforaphane isolated from broccoli, as one of the major neuritogenic enhancers in the wasabi. 6-HITC strongly enhanced the neurite outgrowth and neurofilament expression elicited by a low-concentration of NGF that alone was insufficient to induce neuronal differentiation. 6-HITC also facilitated the sustained-phosphorylation of the extracellular signal-regulated kinase and the autophosphorylation of the NGF receptor TrkA. It was found that PTP1B act as a phosphatase capable of dephosphorylating Tyr-490 of TrkA and was inactivated by 6-HITC in a redox-dependent manner. The identification of PTP1B as a regulator of NGF signaling may provide new clues about the chemoprotective potential of food components, such as isothiocyanates.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号