首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   717篇
  免费   25篇
  742篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   9篇
  2017年   7篇
  2016年   7篇
  2015年   13篇
  2014年   23篇
  2013年   29篇
  2012年   30篇
  2011年   50篇
  2010年   21篇
  2009年   30篇
  2008年   43篇
  2007年   35篇
  2006年   44篇
  2005年   28篇
  2004年   30篇
  2003年   42篇
  2002年   21篇
  2001年   29篇
  2000年   38篇
  1999年   20篇
  1998年   6篇
  1997年   7篇
  1996年   6篇
  1995年   9篇
  1994年   10篇
  1993年   9篇
  1992年   18篇
  1991年   12篇
  1990年   10篇
  1989年   12篇
  1988年   7篇
  1987年   6篇
  1986年   7篇
  1985年   6篇
  1984年   11篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1979年   4篇
  1974年   4篇
  1973年   3篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1968年   3篇
  1966年   5篇
排序方式: 共有742条查询结果,搜索用时 62 毫秒
21.
Heat shock protein 90 (Hsp90) is an essential molecular chaperone whose activity is regulated not only by cochaperones but also by distinct posttranslational modifications. We report here that casein kinase 2 phosphorylates a conserved threonine residue (T22) in α helix-1 of the yeast Hsp90 N-domain both in?vitro and in?vivo. This α helix participates in?a hydrophobic interaction with the catalytic loop in Hsp90's middle domain, helping to stabilize the chaperone's ATPase-competent state. Phosphomimetic mutation of this residue alters Hsp90 ATPase activity and chaperone function and impacts interaction with the cochaperones Aha1 and Cdc37. Overexpression of Aha1 stimulates the ATPase activity, restores cochaperone interactions, and compensates for the functional defects of these Hsp90 mutants.  相似文献   
22.
We previously found that lysophosphatidic acid (LPA)-like activity eliciting Cl(-) currents in Xenopus oocytes is increased in rabbit aqueous humor (AH) following corneal freeze wounds. The purpose of this study was to examine whether actual levels of LPA in AH from wounded eyes are higher than those from control eyes, and to determine the sources and enzymatic pathways of AH LPA in control and wounded conditions. Lysophospholipase D (lysoPLD) activity was measured by the enzymatic determination of choline following incubation of AH samples with exogenous lysophosphatidylcholines (LPCs). The molecular species compositions of LPA and LPC in fresh and incubated AH were determined by liquid chromatography-tandem mass spectrometry. A high, but similar activity of lysoPLD in the samples from both control and freeze-wounded eyes was detected. Its enzymatic properties resemble those of plasma lysoPLD, identified as autotaxin. Levels of LPCs, predominant substrates of lysoPLD in AH, were several times higher in the AH samples from injured eyes than those from the control eyes. Our results suggest that lysoPLD is constitutively released from corneal tissues and/or ciliary body into the AH, with no injury-induced increase in release following freeze-wounding. They also suggest that wound-induced increases in LPA-like biological activity are due to linoleoyl species-rich molecular composition in AH from wounded eyes. A possible mechanism of the altered molecular composition is an increase in the AH concentrations of LPCs, linoleoyl species of which are preferentially converted to corresponding unsaturated LPA by the constitutively active lysoPLD.  相似文献   
23.
Mesenchymal stem cells (MSC) show a very short proliferative life span and readily lose the differentiation potential in culture. However, the growth rate and the proliferative life span of the stem cells markedly increased using tissue culture dishes coated with a basement membrane-like extracellular matrix, which was produced by PYS-2 cells or primary endothelial cells. Furthermore, the stem cells expanded on the extracellular matrix, but not those on plastic tissue culture dishes, retained the osteogenic, chondrogenic, and adipogenic potential throughout many mitotic divisions. The extracellular matrix had greater effects on the proliferation of MSC and the maintenance of the multi-lineage differentiation potential than basic fibroblast growth factor. Mesenchymal stem cells expanded on the extracellular matrix should be useful for regeneration of large tissue defects and repeated cell therapies, which require a large number of stem or progenitor cells.  相似文献   
24.
The balance between mitochondrial fission and fusion is disrupted during mitosis, but the mechanism governing this phenomenon in plant cells remains enigmatic. Here, we used mitochondrial matrix‐localized Kaede protein (mt‐Kaede) to analyze the dynamics of mitochondrial fission in BY‐2 suspension cells. Analysis of the photoactivatable fluorescence of mt‐Kaede suggested that the fission process is dominant during mitosis. This finding was confirmed by an electron microscopic analysis of the size distribution of mitochondria in BY‐2 suspension cells at various stages. Cellular proteins interacting with Myc‐tagged dynamin‐related protein 3A/3B (AtDRP3A and AtDRP3B) were immunoprecipitated with anti‐Myc antibody‐conjugated beads and subsequently identified by microcapillary liquid chromatography–quadrupole time‐of‐flight mass spectrometry (CapLC Q‐TOF) MS/MS. The identified proteins were broadly associated with cytoskeletal (microtubular), phosphorylation, or ubiquitination functions. Mitotic phosphorylation of AtDRP3A/AtDRP3B and mitochondrial fission at metaphase were inhibited by treatment of the cells with a CdkB/cyclin B inhibitor or a serine/threonine protein kinase inhibitor. The fate of AtDRP3A/3B during the cell cycle was followed by time‐lapse imaging of the fluorescence of Dendra2‐tagged AtDRP3A/3B after green‐to‐red photoconversion; this experiment showed that AtDRP3A/3B is partially degraded during interphase. Additionally, we found that microtubules are involved in mitochondrial fission during mitosis, and that mitochondria movement to daughter cell was limited as early as metaphase. Taken together, these findings suggest that mitotic phosphorylation of AtDRP3A/3B promotes mitochondrial fission during plant cell mitosis, and that AtDRP3A/3B is partially degraded at interphase, providing mechanistic insight into the mitochondrial morphological changes associated with cell‐cycle transitions in BY‐2 suspension cells.  相似文献   
25.
Simple method of designing a bilobed flap   总被引:2,自引:0,他引:2  
In the present study, we devised a new method of designing bilobed flaps. This method makes the flap easy to draw and has the merits of diffusing the tension on the flap and minimizing the dog-ear. We used this flap in 16 patients with face and head skin defects and obtained good results.  相似文献   
26.
FtsH is an ATP-dependent metalloprotease present as a hexameric heterocomplex in thylakoid membranes. Encoded in the Arabidopsis thaliana YELLOW VARIEGATED2 (VAR2) locus, FtsH2 is one isoform among major Type A (FtsH1/5) and Type B (FtsH2/8) isomers. Mutants lacking FtsH2 (var2) and FtsH5 (var1) are characterized by a typical leaf-variegated phenotype. The functional importance of the catalytic center (comprised by the zinc binding domain) in FtsH2 was assessed in this study by generating transgenic plants that ectopically expressed FtsH2(488), a proteolytically inactive version of FtsH2. The resulting amino acid substitution inhibited FtsH protease activity in vivo when introduced into Escherichia coli FtsH. By contrast, expression of FtsH2(488) rescued not only leaf variegation in var2 but also seedling lethality in var2 ftsh8, suggesting that the protease activity of Type B isomers is completely dispensable, which implies that the chloroplastic FtsH complex has protease sites in excess and that they act redundantly rather than coordinately. However, expression of FtsH2(488) did not fully rescue leaf variegation in var1 var2 because the overall FtsH levels were reduced under this background. Applying an inducible promoter to our complementation analysis revealed that rescue of leaf variegation indeed depends on the overall amount of FtsH. Our results elucidate protein activity and its amount as important factors for the function of FtsH heterocomplexes that are composed of multiple isoforms in the thylakoid membrane.  相似文献   
27.
Enzyme activities were determined quantitatively in individual rat oocytes to study their energy metabolism during maturation. Low hexokinase activity and high activities of lactate dehydrogenase and enzymes in the phosphate pathway, i.e., glucose 6-P and 6-P gluconate dehydrogenases, were characteristic of immature oocytes. Hexokinase may be a rate-limiting enzyme that enables oocytes to use glucose as an energy source. During maturation, the activities of hexokinase, phosphofructokinase, and malate dehydrogenase increased significantly, suggesting that the glycolytic pathway, as well as the tricarboxylic acid cycle, developed as the first meiotic division proceeded. In contrast, the activities of glucose 6-P and 6-P gluconate dehydrogenases decreased in maturing oocytes. The observation that the enzyme pattern in mature oocytes resembles more closely that in somatic cells appears to be significant, especially in light of previous studies showing this developmental trend in preimplantation embryos.  相似文献   
28.
A membrane preparation from rat brain catalyzed the hydrolysis of [2-3H]glycerol-labeled lysophosphatidylinositol (lysoPI) to yield monoacylglycerol (MG) and inositolphosphates. This phospholipase C activity had an optimal pH of 8.2. The membrane preparation did not require the addition of Ca2+ for its maximum activity, but the activity was inhibited by addition of 0.1 mM EDTA to the assay mixture and was restored by simultaneous addition of 0.2 mM Ca2+. The activity was found to be localized in synaptic plasma membranes prepared by Ficoll and Percoll density gradients. The phospholipase C was highly specific for lysoPI; diacylglycerol formation from phosphatidylinositol, and MG formation from lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylserine were below 5% of that observed with lysoPI under the conditions used. We concluded that there is a pathway for phosphatidylinositol metabolism in brain synaptic membranes which is different from the well-characterized phosphoinositide-specific phospholipase C pathway.Abbreviations PI phosphatidylinositol - lysoPI lysophosphatidylinositol - lysoPI-PLC lysophosphoinositide-specific phospholipase C - PI-PLC phosphoinositide-specific phospholipase C - MG monoacylglycerol - PLC phospholipase C To whom to address reprint requests.  相似文献   
29.
The bioorganic synthesis of an end-capped anti-HIV peptide from a recombinant protein was investigated. Cyanogen bromide-mediated cleavage of two Met-Gln sites across the target anti-HIV sequence generated an HIV-1 fusion inhibitor (SC35EK) analog bearing an N-terminal pyroglutamate (pGlu) residue and a C-terminal homoserine lactone (Hsl) residue. The end-capped peptide, pGlu-SC35EK-Hsl, had similar bioactivity and biophysical properties to the parent peptide, and an improved resistance to peptidase-mediated degradation was observed compared with the non-end-capped peptide obtained using standard recombinant technology.  相似文献   
30.
Multiform biosynthetic pathway of syringyl lignin in angiosperms   总被引:6,自引:0,他引:6  
To clarify the pathway for biosynthesis of sinapyl alcohol in angiosperms, tracer experiments using stable isotopes were performed on robinia ( Robinia pseudoacacia L.), oleander ( Nerium indicum Mill.), magnolia ( Magnolia kobus DC.) and Arabidopsis thaliana (L.) Heynh. Precursors used in the experiment were (13)C- and (2)H ( D)-labeled [8-(13)C, 3-OCD(3)]ferulic acid and [8-(13)C, 3,5-OCD(3)]sinapic acid. The incorporation of labeled precursor into lignin was confirmed by gas chromatography-mass spectrometry of the products of derivatization followed by reductive cleavage. Crude extracts of differentiating xylem or stems from these plants were also assayed for 4-coumarate-CoA ligase (4CL; EC 6.2.1.12) activity using sinapic acid and ferulic acid as substrates. In robinia and oleander, 4CL activity toward sinapic acid was detected, and labeled sinapic acids were incorporated into syringyl lignin. These results indicate that robinia and oleander have a pathway that produces sinapyl alcohol from sinapic acid via sinapoyl-CoA. By contrast, in magnolia and Arabidopsis, 4CL activity toward sinapic acid could not be detected, and labeled sinapic acid was not incorporated into lignin. These results suggest that syringyl lignin biosynthesis in angiosperms operates via multiple pathways that depend on the species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号