首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   52篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   9篇
  2018年   7篇
  2017年   8篇
  2016年   12篇
  2015年   16篇
  2014年   25篇
  2013年   23篇
  2012年   27篇
  2011年   39篇
  2010年   20篇
  2009年   12篇
  2008年   27篇
  2007年   18篇
  2006年   23篇
  2005年   18篇
  2004年   20篇
  2003年   13篇
  2002年   20篇
  2001年   14篇
  2000年   10篇
  1999年   13篇
  1998年   11篇
  1997年   8篇
  1996年   2篇
  1995年   7篇
  1994年   7篇
  1992年   7篇
  1991年   10篇
  1990年   19篇
  1989年   13篇
  1988年   8篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   5篇
  1981年   3篇
  1980年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1967年   1篇
  1966年   2篇
  1965年   1篇
  1963年   1篇
  1961年   1篇
排序方式: 共有514条查询结果,搜索用时 62 毫秒
111.
112.
113.
114.
For much of the time since their discovery, the sirtuin family of deacetylase enzymes has been associated with extension of life span. This longevity-promoting capacity in numerous model systems has enabled the sirtuins to gain "celebrity status" in the field of aging research. However, the mechanisms underpinning these changes remain incompletely defined. A general phenotype long associated with aging is the dysregulation of biological systems, which partly occurs via the accumulation of damage over time. One of the major sources of this damage is oxidative stress, which can harm both biological structures and the mechanisms with which they are repaired. It is now becoming clear that the beneficial life-span effects of sirtuins, along with many of their other functions, are closely linked to their ability to regulate systems that control the redox environment. Here we investigate the links between sirtuins and their oxidative/redox environment and review the control mechanisms that are regulated by the activity of sirtuin deacetylase proteins.  相似文献   
115.
Toxigenic Vibrio cholerae, rarely isolated from the aquatic environment between cholera epidemics, can be detected in what is now understood to be a dormant stage, i.e., viable but nonculturable when standard bacteriological methods are used. In the research reported here, biofilms have proved to be a source of culturable V. cholerae, even in nonepidemic periods. Biweekly environmental surveillance for V. cholerae was carried out in Mathbaria, an area of cholera endemicity adjacent to the Bay of Bengal, with the focus on V. cholerae O1 and O139 Bengal. A total of 297 samples of water, phytoplankton, and zooplankton were collected between March and December 2004, yielding eight V. cholerae O1 and four O139 Bengal isolates. A combination of culture methods, multiplex-PCR, and direct fluorescent antibody (DFA) counting revealed the Mathbaria aquatic environment to be a reservoir for V. cholerae O1 and O139 Bengal. DFA results showed significant clumping of the bacteria during the interepidemic period for cholera, and the fluorescent micrographs revealed large numbers of V. cholerae O1 in thin films of exopolysaccharides (biofilm). A similar clumping of V. cholerae O1 was also observed in samples collected from Matlab, Bangladesh, where cholera also is endemic. Thus, the results of the study provided in situ evidence for V. cholerae O1 and O139 in the aquatic environment, predominantly as viable but nonculturable cells and culturable cells in biofilm consortia. The biofilm community is concluded to be an additional reservoir of cholera bacteria in the aquatic environment between seasonal epidemics of cholera in Bangladesh.  相似文献   
116.
Bhave NS  Veley KM  Nadeau JA  Lucas JR  Bhave SL  Sack FD 《Planta》2009,229(2):357-367
Mutations in TOO MANY MOUTHS (TMM), which encodes a receptor-like protein, cause stomatal patterning defects in Arabidopsis leaves but eliminate stomatal formation in stems. Stomatal development in wild-type and tmm stems was analyzed to define TMM function. Epidermal cells in young tmm stems underwent many asymmetric divisions characteristic of entry into the stomatal pathway. The resulting precursor cells, meristemoids, appropriately expressed cell fate markers such as pTMM:GFP. However, instead of progressing developmentally by forming a guard mother cell, the meristemoids arrested, dedifferentiated, and enlarged. Thus asymmetric divisions are necessary but not sufficient for stomatal formation in stems, and TMM promotes the fate and developmental progression of early precursor cells. Comparable developmental and mature stomatal phenotypes were also found in tmm hypocotyls and in the proximal flower stalk. TMM is also a positive regulator of meristemoid division in leaves suggesting that TMM generally promotes meristemoid activity. Our results are consistent with a model in which TMM interacts with other proteins to modulate precursor cell fate and progression in an organ and domain-specific manner. Finally, the consistent presence of a small number of dedifferentiated meristemoids in mature wild-type stems suggests that precursor cell arrest is a normal feature of Arabidopsis stem development.  相似文献   
117.
Forty-two strains of Vibrio parahaemolyticus were isolated from Bay of Bengal estuaries and, with two clinical strains, analyzed for virulence, phenotypic, and molecular traits. Serological analysis indicated O8, O3, O1, and K21 to be the major O and K serogroups, respectively, and O8:K21, O1:KUT, and O3:KUT to be predominant. The K antigen(s) was untypeable, and pandemic serogroup O3:K6 was not detected. The presence of genes toxR and tlh were confirmed by PCR in all but two strains, which also lacked toxR. A total of 18 (41%) strains possessed the virulence gene encoding thermostable direct hemolysin (TDH), and one had the TDH-related hemolysin (trh) gene, but not tdh. Ten (23%) strains exhibited Kanagawa phenomenon that surrogates virulence, of which six, including the two clinical strains, possessed tdh. Of the 18 tdh-positive strains, 17 (94%), including the two clinical strains, had the seromarker O8:K21, one was O9:KUT, and the single trh-positive strain was O1:KUT. None had the group-specific or ORF8 pandemic marker gene. DNA fingerprinting employing pulsed-field gel electrophoresis (PFGE) of SfiI-digested DNA and cluster analysis showed divergence among the strains. Dendrograms constructed using PFGE (SfiI) images from a soft database, including those of pandemic and nonpandemic strains of diverse geographic origin, however, showed that local strains formed a cluster, i.e., “clonal cluster,” as did pandemic strains of diverse origin. The demonstrated prevalence of tdh-positive and diarrheagenic serogroup O8:K21 strains in coastal villages of Bangladesh indicates a significant human health risk for inhabitants.Vibrio parahaemolyticus, a halophilic bacterium, is a causative agent of seafood-related gastroenteritis worldwide (5, 13, 41) and one of the major causes of seafood-associated gastroenteritis in the United States, Asia, Europe, and countries where sporadic cases and outbreaks occur regularly (12, 13). The bacterium is prevalent in brackish and marine waters (43). Historically first identified as the causative agent of a gastroenteritis outbreak in Japan in 1950 (14), V. parahaemolyticus is now recognized as one of the most important food-borne pathogens in Asia, causing approximately half of food poisoning outbreaks in Taiwan, Japan, Vietnam, and Southeast Asian countries.The gene encoding the thermostable direct hemolysin (TDH)—manifested as beta-hemolysis when V. parahaemolyticus is plated onto Wagatsuma blood agar (43), i.e., the Kanagawa phenomenon (KP)—has been shown to be present in more than 90% of clinical strains and less than 1% of environmental strains (31, 39). Some strains also possess the gene trh, encoding the TDH-related hemolysin (TRH), or both tdh and trh (18, 43). Another gene, the thermolabile hemolysin gene (tlh), was reported to be present in V. parahaemolyticus (36) and subsequently in all V. parahaemolyticus strains tested (38).V. parahaemolyticus gastroenteritis is a multiserogroup affliction, with at least 13 O serogroups and 71 K serotypes detected (19, 42). In 1996, serogroup O3:K6 was first reported from diarrhea patients in Kolkata, India (32), and subsequently worldwide, as an increasing incidence of gastroenteritis caused by the serogroup O3:K6 was reported in many countries (41). Rapid spreading of serogroup O3:K6 infections in Asia (27, 32), and subsequently in the United States (12), Africa (3), Europe (25), and Latin America (15), indicated its potential as a pandemic pathogen (34, 43). In addition, V. parahaemolyticus serogroup O3:K6 possesses the group-specific (GS) gene sequence in the toxRS operon and ORF8, of the 10 known open reading frames (ORFs) of the O3:K6-specific filamentous phage f237. The GS gene and ORF8 provide genetic markers distinguishing O3:K6 from other serogroups (27, 29). Recent studies have shown O4:K68, O1:K25, O1:K26, O1:K untypeable (O1:KUT), and O3:K46 serogroups to share genetic markers specific for the pandemic serogroup O3:K6 (7, 10, 27, 34, 41). The non-O3:K6 serogroups with pandemic traits are increasingly found worldwide, and therefore, their pandemic potential cannot be ruled out.In Bangladesh, strains of different serogroups having genetic markers for the serogroup O3:K6 of V. parahaemolyticus were reported to have been isolated from hospitalized gastroenteritis patients in Dhaka (7). A systematic surveillance of the coastal areas bordering the Bay of Bengal where diarrheal disease is endemic (1) has not been done. This study, the first of its kind, was undertaken to investigate virulence potential, as well as phenotypic and genotypic traits of V. parahaemolyticus strains occurring in the estuarine ecosystem of Bangladesh.  相似文献   
118.

Background

All viruses in the family Bunyaviridae possess a tripartite genome, consisting of a small, a medium, and a large RNA segment. Bunyaviruses therefore possess considerable evolutionary potential, attributable to both intramolecular changes and to genome segment reassortment. Hantaviruses (family Bunyaviridae, genus Hantavirus) are known to cause human hemorrhagic fever with renal syndrome or hantavirus pulmonary syndrome. The primary reservoir host of Sin Nombre virus is the deer mouse (Peromyscus maniculatus), which is widely distributed in North America. We investigated the prevalence of intramolecular changes and of genomic reassortment among Sin Nombre viruses detected in deer mice in three western states.

Methods

Portions of the Sin Nombre virus small (S) and medium (M) RNA segments were amplified by RT-PCR from kidney, lung, liver and spleen of seropositive peromyscine rodents, principally deer mice, collected in Colorado, New Mexico and Montana from 1995 to 2007. Both a 142 nucleotide (nt) amplicon of the M segment, encoding a portion of the G2 transmembrane glycoprotein, and a 751 nt amplicon of the S segment, encoding part of the nucleocapsid protein, were cloned and sequenced from 19 deer mice and from one brush mouse (P. boylii), S RNA but not M RNA from one deer mouse, and M RNA but not S RNA from another deer mouse.

Results

Two of 20 viruses were found to be reassortants. Within virus sequences from different rodents, the average rate of synonymous substitutions among all pair-wise comparisons (πs) was 0.378 in the M segment and 0.312 in the S segment sequences. The replacement substitution rate (πa) was 7.0 × 10-4 in the M segment and 17.3 × 10-4 in the S segment sequences. The low πa relative to πs suggests strong purifying selection and this was confirmed by a Fu and Li analysis. The absolute rate of molecular evolution of the M segment was 6.76 × 10-3 substitutions/site/year. The absolute age of the M segment tree was estimated to be 37 years. In the S segment the rate of molecular evolution was 1.93 × 10-3 substitutions/site/year and the absolute age of the tree was 106 years. Assuming that mice were infected with a single Sin Nombre virus genotype, phylogenetic analyses revealed that 10% (2/20) of viruses were reassortants, similar to the 14% (6/43) found in a previous report.

Conclusion

Age estimates from both segments suggest that Sin Nombre virus has evolved within the past 37–106 years. The rates of evolutionary changes reported here suggest that Sin Nombre virus M and S segment reassortment occurs frequently in nature.  相似文献   
119.

Background

While traditionally quite distinct, functional neuroimaging (e.g. functional magnetic resonance imaging: fMRI) and functional interference techniques (e.g. transcranial magnetic stimulation: TMS) increasingly address similar questions of functional brain organization, including connectivity, interactions, and causality in the brain. Time-resolved TMS over multiple brain network nodes can elucidate the relative timings of functional relevance for behavior (“TMS chronometry”), while fMRI functional or effective connectivity (fMRI EC) can map task-specific interactions between brain regions based on the interrelation of measured signals. The current study empirically assessed the relation between these different methods.

Methodology/Principal Findings

One group of 15 participants took part in two experiments: one fMRI EC study, and one TMS chronometry study, both of which used an established cognitive paradigm involving one visuospatial judgment task and one color judgment control task. Granger causality mapping (GCM), a data-driven variant of fMRI EC analysis, revealed a frontal-to-parietal flow of information, from inferior/middle frontal gyrus (MFG) to posterior parietal cortex (PPC). FMRI EC-guided Neuronavigated TMS had behavioral effects when applied to both PPC and to MFG, but the temporal pattern of these effects was similar for both stimulation sites. At first glance, this would seem in contradiction to the fMRI EC results. However, we discuss how TMS chronometry and fMRI EC are conceptually different and show how they can be complementary and mutually constraining, rather than contradictory, on the basis of our data.

Conclusions/Significance

The findings that fMRI EC could successfully localize functionally relevant TMS target regions on the single subject level, and conversely, that TMS confirmed an fMRI EC identified functional network to be behaviorally relevant, have important methodological and theoretical implications. Our results, in combination with data from earlier studies by our group (Sack et al., 2007, Cerebral Cortex), lead to informed speculations on complex brain mechanisms, and TMS disruption thereof, underlying visuospatial judgment. This first in-depth empirical and conceptual comparison of fMRI EC and TMS chronometry thereby shows the complementary insights offered by the two methods.  相似文献   
120.
Germain H  Qu N  Cheng YT  Lee E  Huang Y  Dong OX  Gannon P  Huang S  Ding P  Li Y  Sack F  Zhang Y  Li X 《PLoS genetics》2010,6(12):e1001250
Nucleocytoplasmic trafficking is emerging as an important aspect of plant immunity. The three related pathways affecting plant immunity include Nuclear Localization Signal (NLS)-mediated nuclear protein import, Nuclear Export Signal (NES)-dependent nuclear protein export, and mRNA export relying on MOS3, a nucleoporin belonging to the Nup107-160 complex. Here we report the characterization, identification, and detailed analysis of Arabidopsis modifier of snc1, 11 (mos11). Mutations in MOS11 can partially suppress the dwarfism and enhanced disease resistance phenotypes of snc1, which carries a gain-of-function mutation in a TIR-NB-LRR type Resistance gene. MOS11 encodes a conserved eukaryotic protein with homology to the human RNA binding protein CIP29. Further functional analysis shows that MOS11 localizes to the nucleus and that the mos11 mutants accumulate more poly(A) mRNAs in the nucleus, likely resulting from reduced mRNA export activity. Epistasis analysis between mos3-1 and mos11-1 revealed that MOS11 probably functions in the same mRNA export pathway as MOS3, in a partially overlapping fashion, before the mRNA molecules pass through the nuclear pores. Taken together, MOS11 is identified as a new protein contributing to the transfer of mature mRNA from the nucleus to the cytosol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号