首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   422篇
  免费   49篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   9篇
  2018年   7篇
  2017年   8篇
  2016年   12篇
  2015年   16篇
  2014年   23篇
  2013年   20篇
  2012年   25篇
  2011年   37篇
  2010年   16篇
  2009年   10篇
  2008年   25篇
  2007年   13篇
  2006年   19篇
  2005年   16篇
  2004年   18篇
  2003年   13篇
  2002年   20篇
  2001年   13篇
  2000年   9篇
  1999年   12篇
  1998年   10篇
  1997年   6篇
  1996年   2篇
  1995年   5篇
  1994年   6篇
  1992年   7篇
  1991年   10篇
  1990年   19篇
  1989年   13篇
  1988年   8篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1981年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
  1961年   1篇
排序方式: 共有471条查询结果,搜索用时 15 毫秒
101.
The crystal structure of calmodulin (Mr 16,700, 148 residues) from Drosophila melanogaster as expressed in a bacterial system has been determined and refined at 2.2-A resolution. Starting with the structure of mammalian calmodulin, we produced an extensively refitted and refined model with a conventional crystallographic R value of 0.197 for the 5,239 reflections (F greater than or equal to 2 sigma (F)) within the 10.0-2.2-A resolution range. The model includes 1,164 protein atoms, 4 calcium ions, and 78 water molecules and has root mean square deviations from standard values of 0.018 A for bond lengths and 0.043 A for angle distances. The overall structure is similar to mammalian calmodulin, with a seven-turn central helix connecting the two calcium-binding domains. The "dumb-bell" shaped molecule contains seven alpha-helices and four "EF hand" calcium-binding sites. Although the amino acid sequences of mammalian and Drosophila calmodulins differ by only three conservative amino acid changes, the refined model reveals a number of significant differences between the two structures. Superimposition of the structures yields a root mean square deviation of 1.22 A for the 1,120 equivalent atoms. The calcium-binding domains have a root mean square deviation of 0.85 A for the 353 equivalent atoms. There are also differences in the amino terminus, the bend of the central alpha-helix, and the orientations of some of the side chains.  相似文献   
102.
What is a Plant Cell? Continued   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   
103.
104.
G H Sack  C C Talbot 《Gene》1989,84(2):509-515
We have determined the genomic sequence of the human GSAA1 gene, a member of the family of acute-phase human serum amyloid A (SAA)-encoding genes. This sequence predicts a mature protein of 104 amino acids (aa), several of which differ from residues usually conserved in the sequence of SAA proteins isolated from serum. Despite coding differences, however, the four-exon structure of GSAA1 resembles that of other SAA genes in humans and mice. The N-terminal 25 aa of the mature GSAA1 protein are virtually identical to those of an 'SAA-like' autocrine collagenase inducer produced by rabbit synovial fibroblasts; the latter also differ from the corresponding aa found in SAA in serum. We propose that GSAA1 is the human gene coding for a protein closely related to the SAA, but which is adapted to this important autocrine cytokine function.  相似文献   
105.
An X-ray crystal structure of one of our previously discovered RORγt inverse agonists bound to the RORγt ligand binding domain revealed that the cyclohexane carboxylic acid group of compound 2 plays a significant role in RORγt binding, forming four hydrogen bonding and ionic interactions with RORγt. SAR studies centered around the cyclohexane carboxylic acid group led to identification of several structurally diverse and more potent compounds, including new carboxylic acid analogues 7 and 20, and cyclic sulfone analogues 34 and 37. Notably, compounds 7 and 20 were found to maintain the desirable pharmacokinetic profile of 2.  相似文献   
106.
107.
108.
For much of the time since their discovery, the sirtuin family of deacetylase enzymes has been associated with extension of life span. This longevity-promoting capacity in numerous model systems has enabled the sirtuins to gain "celebrity status" in the field of aging research. However, the mechanisms underpinning these changes remain incompletely defined. A general phenotype long associated with aging is the dysregulation of biological systems, which partly occurs via the accumulation of damage over time. One of the major sources of this damage is oxidative stress, which can harm both biological structures and the mechanisms with which they are repaired. It is now becoming clear that the beneficial life-span effects of sirtuins, along with many of their other functions, are closely linked to their ability to regulate systems that control the redox environment. Here we investigate the links between sirtuins and their oxidative/redox environment and review the control mechanisms that are regulated by the activity of sirtuin deacetylase proteins.  相似文献   
109.
Toxigenic Vibrio cholerae, rarely isolated from the aquatic environment between cholera epidemics, can be detected in what is now understood to be a dormant stage, i.e., viable but nonculturable when standard bacteriological methods are used. In the research reported here, biofilms have proved to be a source of culturable V. cholerae, even in nonepidemic periods. Biweekly environmental surveillance for V. cholerae was carried out in Mathbaria, an area of cholera endemicity adjacent to the Bay of Bengal, with the focus on V. cholerae O1 and O139 Bengal. A total of 297 samples of water, phytoplankton, and zooplankton were collected between March and December 2004, yielding eight V. cholerae O1 and four O139 Bengal isolates. A combination of culture methods, multiplex-PCR, and direct fluorescent antibody (DFA) counting revealed the Mathbaria aquatic environment to be a reservoir for V. cholerae O1 and O139 Bengal. DFA results showed significant clumping of the bacteria during the interepidemic period for cholera, and the fluorescent micrographs revealed large numbers of V. cholerae O1 in thin films of exopolysaccharides (biofilm). A similar clumping of V. cholerae O1 was also observed in samples collected from Matlab, Bangladesh, where cholera also is endemic. Thus, the results of the study provided in situ evidence for V. cholerae O1 and O139 in the aquatic environment, predominantly as viable but nonculturable cells and culturable cells in biofilm consortia. The biofilm community is concluded to be an additional reservoir of cholera bacteria in the aquatic environment between seasonal epidemics of cholera in Bangladesh.  相似文献   
110.
Bhave NS  Veley KM  Nadeau JA  Lucas JR  Bhave SL  Sack FD 《Planta》2009,229(2):357-367
Mutations in TOO MANY MOUTHS (TMM), which encodes a receptor-like protein, cause stomatal patterning defects in Arabidopsis leaves but eliminate stomatal formation in stems. Stomatal development in wild-type and tmm stems was analyzed to define TMM function. Epidermal cells in young tmm stems underwent many asymmetric divisions characteristic of entry into the stomatal pathway. The resulting precursor cells, meristemoids, appropriately expressed cell fate markers such as pTMM:GFP. However, instead of progressing developmentally by forming a guard mother cell, the meristemoids arrested, dedifferentiated, and enlarged. Thus asymmetric divisions are necessary but not sufficient for stomatal formation in stems, and TMM promotes the fate and developmental progression of early precursor cells. Comparable developmental and mature stomatal phenotypes were also found in tmm hypocotyls and in the proximal flower stalk. TMM is also a positive regulator of meristemoid division in leaves suggesting that TMM generally promotes meristemoid activity. Our results are consistent with a model in which TMM interacts with other proteins to modulate precursor cell fate and progression in an organ and domain-specific manner. Finally, the consistent presence of a small number of dedifferentiated meristemoids in mature wild-type stems suggests that precursor cell arrest is a normal feature of Arabidopsis stem development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号