首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   14篇
  488篇
  2024年   2篇
  2023年   8篇
  2022年   9篇
  2021年   28篇
  2020年   15篇
  2019年   11篇
  2018年   15篇
  2017年   15篇
  2016年   25篇
  2015年   24篇
  2014年   32篇
  2013年   37篇
  2012年   45篇
  2011年   44篇
  2010年   36篇
  2009年   24篇
  2008年   33篇
  2007年   20篇
  2006年   18篇
  2005年   12篇
  2004年   12篇
  2003年   14篇
  2002年   4篇
  2001年   1篇
  1993年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有488条查询结果,搜索用时 0 毫秒
41.
Defective Tyrosyl-DNA phosphodiesterase 1 (TDP1) can cause spinocerebellar ataxia with axonal neuropathy (SCAN1), a neurodegenerative syndrome associated with marked cerebellar atrophy and peripheral neuropathy. Although SCAN1 lymphoblastoid cells show pronounced defects in the repair of chromosomal single-strand breaks (SSBs), it is unknown if this DNA repair activity is important for neurons or for preventing neurodegeneration. Therefore, we generated Tdp1-/- mice to assess the role of Tdp1 in the nervous system. Using both in vitro and in vivo assays, we found that cerebellar neurons or primary astrocytes derived from Tdp1-/- mice display an inability to rapidly repair DNA SSBs associated with Top1-DNA complexes or oxidative damage. Moreover, loss of Tdp1 resulted in age-dependent and progressive cerebellar atrophy. Tdp1-/- mice treated with topotecan, a drug that increases levels of Top1-DNA complexes, also demonstrated significant loss of intestinal and hematopoietic progenitor cells. These data indicate that TDP1 is required for neural homeostasis, and reveal a widespread requisite for TDP1 function in response to acutely elevated levels of Top1-associated DNA strand breaks.  相似文献   
42.
Peptides are important naturally occurring ligands of MHC molecules. X-ray crystallographic studies have enabled extensive characterization of such peptide ligands. Yet structural and dynamic changes of these peptides in the MHC bound state are not well understood. These conformational transitions are key to understanding the function of MHC molecules and for the development of peptide-based therapeutics. Employing NMR for such studies can fill this gap but it requires the availability of peptides labeled with NMR-active nuclei. Here we report production of nine-mer MHC-binding peptides for use in high resolution NMR studies. The method utilizes a fusion protein approach of attaching the peptide to an easily expressed bacterial protein. The fusion protein construct design allows for rapid purification of the fusion protein and avoids chemical modification of the peptide as a result of the cleavage reaction. The methods developed here allow for rapid cloning of additional MHC binding peptides without significant molecular biology effort. 8?C10 mg of mature freeze dried peptides can be obtained from 1 liter of minimal media, sufficient for NMR experimentation. Six uniformly 15N-labeled peptides have been successfully expressed in bacteria and NMR spectra with the expected number of well-resolved signals were recorded. The results obtained here will make peptide-MHC complexes amenable to structural analysis which has not been possible previously.  相似文献   
43.
44.

Background

Protein-protein interactions play a crucial role in enabling a pathogen to survive within a host. In many cases the interactions involve a complex of proteins rather than just two given proteins. This is especially true for pathogens like M. tuberculosis that are able to successfully survive the inhospitable environment of the macrophage. Studying such interactions in detail may help in developing small molecules that either disrupt or augment the interactions. Here, we describe the development of an E. coli based bacterial three-hybrid system that can be used effectively to study ternary protein complexes.

Methodology/Principal Findings

The protein-protein interactions involved in M. tuberculosis pathogenesis have been used as a model for the validation of the three-hybrid system. Using the M. tuberculosis RD1 encoded proteins CFP10, ESAT6 and Rv3871 for our proof-of-concept studies, we show that the interaction between the proteins CFP10 and Rv3871 is strengthened and stabilized in the presence of ESAT6, the known heterodimeric partner of CFP10. Isolating peptide candidates that can disrupt crucial protein-protein interactions is another application that the system offers. We demonstrate this by using CFP10 protein as a disruptor of a previously established interaction between ESAT6 and a small peptide HCL1; at the same time we also show that CFP10 is not able to disrupt the strong interaction between ESAT6 and another peptide SL3.

Conclusions/Significance

The validation of the three-hybrid system paves the way for finding new peptides that are stronger binders of ESAT6 compared even to its natural partner CFP10. Additionally, we believe that the system offers an opportunity to study tri-protein complexes and also perform a screening of protein/peptide binders to known interacting proteins so as to elucidate novel tri-protein complexes.  相似文献   
45.
Nonhomologous end-joining (NHEJ) is the primary DNA repair pathway thought to underlie chromosomal translocations and other genomic rearrangements in somatic cells. The canonical NHEJ pathway, including DNA ligase IV (Lig4), suppresses genomic instability and chromosomal translocations, leading to the notion that a poorly defined, alternative NHEJ (alt-NHEJ) pathway generates these rearrangements. Here, we investigate the DNA ligase requirement of chromosomal translocation formation in mouse cells. Mammals have two other DNA ligases, Lig1 and Lig3, in addition to Lig4. As deletion of Lig3 results in cellular lethality due to its requirement in mitochondria, we used recently developed cell lines deficient in nuclear Lig3 but rescued for mitochondrial DNA ligase activity. Further, zinc finger endonucleases were used to generate DNA breaks at endogenous loci to induce translocations. Unlike with Lig4 deficiency, which causes an increase in translocation frequency, translocations are reduced in frequency in the absence of Lig3. Residual translocations in Lig3-deficient cells do not show a bias toward use of pre-existing microhomology at the breakpoint junctions, unlike either wild-type or Lig4-deficient cells, consistent with the notion that alt-NHEJ is impaired with Lig3 loss. By contrast, Lig1 depletion in otherwise wild-type cells does not reduce translocations or affect microhomology use. However, translocations are further reduced in Lig3-deficient cells upon Lig1 knockdown, suggesting the existence of two alt-NHEJ pathways, one that is biased toward microhomology use and requires Lig3 and a back-up pathway which does not depend on microhomology and utilizes Lig1.  相似文献   
46.
47.
The role of N-linked glycosylation of the Newcastle disease virus (NDV) fusion (F) protein in viral replication and pathogenesis was examined by eliminating potential acceptor sites using a reverse genetics system for the moderately pathogenic strain Beaudette C (BC). The NDV-BC F protein contains six potential acceptor sites for N-linked glycosylation at residues 85, 191, 366, 447, 471, and 541 (sites Ng1 to Ng6, respectively). The sites at Ng2 and Ng5 are present in heptad repeat (HR) domains HR1 and HR2, respectively, and thus might affect fusion. Each N-glycosylation site was eliminated individually by replacing asparagine (N) with glutamine (Q), and a double mutant (Ng2 + 5) involving the two HR domains was also made. Each mutant was successfully recovered by reverse genetics except for the one involving Ng6, which is present in the cytoplasmic domain. All of the F proteins expressed by the recovered mutant viruses were efficiently cleaved and transported to the infected-cell surface. None of the individual mutations affected viral fusogenicity, but the double mutation at Ng2 and Ng5 in HR1 and HR2 increased fusogenicity >12-fold. The single mutations at sites Ng1, Ng2, and Ng5 resulted in modestly reduced multicycle growth in vitro. These three single mutations were also the most attenuating in eggs and 1-day-old chicks and were associated with decreased replication and spread in 2-week-old chickens. In contrast, the combination of the mutations at Ng2 and Ng5 yielded a virus that, compared to the BC parent, replicated >100-fold more efficiently in vitro, was more virulent in eggs and chicks, replicated more efficiently in chickens with enhanced tropism for the brain and gut, and elicited stronger humoral cell responses. These results illustrate the effects of N-glycosylation of the F protein on NDV pathobiology and suggest that the N-glycans in HR1 and HR2 coordinately downregulate viral fusion and virulence.  相似文献   
48.
The multi host tick, Hyalomma anatolicum, is the commonest Hyalomma species in India and cattle serves as the main host of this species. A study to evaluate the acaricide resistance of H. anatolicum to deltamethrin, cypermethrin and diazinon was conducted in 20 areas located in three agro climatic regions known to have abundance of the species. Results obtained by the “larval packet test” (LPT) showed a low grade resistance (level-I, RF?<5) in the tick species to both deltamethrin and cypermethrin in 10 areas and higher grade resistance (level-II, RF?<25) to deltamethrin in one area, where intensive use of synthetic pyrethroids are practiced for tick control. Low grade resistance to diazinon (level I) was recorded in six areas where organophosphates compounds are extensively used for agricultural practices allowing increased exposure of the moulting instars of the ticks to these chemicals. Biochemical analysis of the samples suggested involvement of esterase and alterations of acetylcholinesterase in the resistance mechanisms.  相似文献   
49.
A series of novel hybrid molecules 4a-y containing thiazole and benzotriazole templates were designed and synthesized. The structures of the synthesized compounds were elucidated by IR, (1)H NMR, (13)C NMR and mass spectral data. All the synthesized compounds were tested for their antimicrobial activity (zone of inhibition) against Gram-positive, Gram-negative strains of bacteria as well as fungal strains. After that minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and minimum fungicidal concentrations (MFCs) of all the synthesized compounds were determined. The investigation of antimicrobial screening data revealed that most of the tested compounds showed moderate to good microbial inhibitions.  相似文献   
50.
Albumin is one of the most abundant plasma proteins and is heavily glycated in diabetes. In this study, we have addressed whether variation in the albumin levels influence glycation of plasma proteins and HbA1c. The study was performed in three systems: (1) streptozotocin (STZ)-induced diabetic mice plasma, (2) diabetic clinical plasma, and (3) in vitro glycated plasma. Diabetic mice and clinical plasma samples were categorized as diabetic high albumin plasma (DHAP) and diabetic low albumin plasma (DLAP) on the basis of their albumin levels. For the in vitro experiment, two albumin levels, high albumin plasma (HAP) and low albumin plasma (LAP), were created by differential depletion of plasma albumin. Protein glycation was studied by using a combination of two-dimensional electrophoresis (2DE), Western blotting, and LC-MS(E). In both mice and clinical experiments, an increased plasma protein glycation was observed in DLAP than in DHAP. Additionally, plasma albumin levels were negatively correlated with HbA1c. The in vitro experiment with differential depletion of albumin mechanistically showed that the low albumin levels are associated with increased plasma protein glycation and that albumin competes for glycation with other plasma proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号