首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   471篇
  免费   14篇
  2024年   1篇
  2023年   7篇
  2022年   8篇
  2021年   28篇
  2020年   15篇
  2019年   11篇
  2018年   15篇
  2017年   15篇
  2016年   25篇
  2015年   24篇
  2014年   32篇
  2013年   37篇
  2012年   45篇
  2011年   44篇
  2010年   36篇
  2009年   24篇
  2008年   33篇
  2007年   20篇
  2006年   18篇
  2005年   12篇
  2004年   12篇
  2003年   14篇
  2002年   4篇
  2001年   1篇
  1993年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有485条查询结果,搜索用时 31 毫秒
151.
The epimorphic regeneration of zebrafish caudal fin is rapid and complete. We have analyzed the biomechanism of zebrafish caudal fin regeneration at various time points based on differential proteomics approaches. The spectrum of proteome changes caused by regeneration were analyzed among controls (0 h) and 1, 12, 24, 48, and 72 h postamputation involving quantitative differential proteomics analysis based on two-dimensional gel electrophoresis matrix-assisted laser desorption/ionization and differential in-gel electrophoresis Orbitrap analysis. A total of 96 proteins were found differentially regulated between the control nonregenerating and regenerating tissues of different time points for having at least 1.5-fold changes. 90 proteins were identified as differentially regulated for regeneration based on differential in-gel electrophoresis analysis between the control and regenerating tissues. 35 proteins were characterized for its expression in all of the five regenerating time points against the control samples. The proteins identified and associated with regeneration were found to be directly allied with various molecular, biological, and cellular functions. Based on network pathway analysis, the identified proteome data set for regeneration was majorly associated in maintaining cellular structure and architecture. Also the proteins were found associated for the cytoskeleton remodeling pathway and cellular immune defense mechanism. The major proteins that were found differentially regulated during zebrafish caudal fin regeneration includes keratin and its 10 isoforms, cofilin 2, annexin a1, skeletal α1 actin, and structural proteins. Annexin A1 was found to be exclusively undergoing phosphorylation during regeneration. The obtained differential proteome and the direct association of the various proteins might lead to a new understanding of the regeneration mechanism.  相似文献   
152.

Background

Little is known about the association between financial stress and health care outcomes. Our objective was to examine the association between self-reported financial stress during initial hospitalization and long-term outcomes after acute myocardial infarction (AMI).

Materials and Methods

We used Prospective Registry Evaluating Myocardial Infarction: Event and Recovery (PREMIER) data, an observational, multicenter US study of AMI patients discharged between January 2003 and June 2004. Primary outcomes were disease-specific and generic health status outcomes at 1 year (symptoms, function, and quality of life (QoL)), assessed by the Seattle Angina Questionnaire [SAQ] and Short Form [SF]-12. Secondary outcomes included 1-year rehospitalization and 4-year mortality. Hierarchical regression models accounted for patient socio-demographic, clinical, and quality of care characteristics, and access and barriers to care.

Results

Among 2344 AMI patients, 1241 (52.9%) reported no financial stress, 735 (31.4%) reported low financial stress, and 368 (15.7%) reported high financial stress. When comparing individuals reporting low financial stress to no financial stress, there were no significant differences in post-AMI outcomes. In contrast, individuals reporting high financial stress were more likely to have worse physical health (SF-12 PCS mean difference −3.24, 95% Confidence Interval [CI]: −4.82, −1.66), mental health (SF-12 MCS mean difference: −2.44, 95% CI: −3.83, −1.05), disease-specific QoL (SAQ QoL mean difference: −6.99, 95% CI: −9.59, −4.40), and be experiencing angina (SAQ Angina Relative Risk = 1.66, 95%CI: 1.19, 2.32) at 1 year post-AMI. While 1-year readmission rates were increased (Hazard Ratio = 1.50; 95%CI: 1.20, 1.86), 4-year mortality was no different.

Conclusions

High financial stress is common and an important risk factor for worse long-term outcomes post-AMI, independent of access and barriers to care.  相似文献   
153.
We recently demonstrated that a 17-ketosteroid, epiandrosterone, attenuates L-type Ca2+ currents (ICa-L) in cardiac myocytes and inhibits myocardial contractility. Because 17-ketosteroids are known to inhibit glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, and to reduce intracellular NADPH levels, we hypothesized that inhibition of G6PD could be a novel signaling mechanism which inhibit ICa-L and, therefore, cardiac contractile function. We tested this idea by examining myocardial function in isolated hearts and Ca2+ channel activity in isolated cardiac myocytes. Myocardial function was tested in Langendorff perfused hearts and ICa-L were recorded in the whole-cell patch configuration by applying double pulses from a holding potential of −80 mV and then normalized to the peak amplitudes of control currents. 6-Aminonicotinamide, a competitive inhibitor of G6PD, increased pCO2 and decreased pH. Additionally, 6-aminonicotinamide inhibited G6PD activity, reduced NADPH levels, attenuated peak ICa-L amplitudes, and decreased left ventricular developed pressure and ±dp/dt. Finally, dialyzing NADPH into cells from the patch pipette solution attenuated the suppression of ICa-L by 6-aminonicotinamide. Likewise, in G6PD-deficient mice, G6PD insufficiency in the heart decreased GSH-to-GSSG ratio, superoxide, cholesterol and acetyl CoA. In these mice, M-mode echocardiographic findings showed increased diastolic volume and end-diastolic diameter without changes in the fraction shortening. Taken together, these findings suggest that inhibiting G6PD activity and reducing NADPH levels alters metabolism and leads to inhibition of L-type Ca2+ channel activity. Notably, this pathway may be involved in modulating myocardial contractility under physiological and pathophysiological conditions during which the pentose phosphate pathway-derived NADPH redox is modulated (e.g., ischemia-reperfusion and heart failure).  相似文献   
154.
Diacylglycerol O-acyltransferase 1 (DGAT1) is a microsomal enzyme that catalyzes the final step of triglyceride synthesis. The DGAT1 gene is a strong functional candidate for determining milk fat content in cattle. In this work, we used PCR-SSCP (polymerase chain reaction-single-strand conformation polymorphism) and DNA sequencing to examine polymorphism in the region spanning exon 7 to exon 9 of the DGAT1 gene in Murrah and Pandharpuri buffaloes. Three alleles (A, B and C) and four novel single-nucleotide polymorphisms were identified in the buffalo DGAT1 gene. The frequencies of the alleles differed between the two buffalo breeds, with allele C being present in Murrah but not in Pandharpuri buffalo. The allele variation detected in this work may influence DGAT1 expression and function. The results described here could be useful in examining the association between the DGAT1 gene and milk traits in buffalo.  相似文献   
155.
Cancer is associated with increased glycolysis and carbonyl stress. In view of this, AGE modified proteins were identified from clinical breast cancer tissue using 2DE-immunoblot and mass-spectrometry. These proteins were identified to be serotransferrin, fibrinogen gamma chain, glycerol-3-phosphate dehydrogenase, lactate dehydrogenase, annexin II, prohibitin and peroxiredoxin 6, which have established role in cancer. Further, RAGE expression and its downstream signaling proteins NADPH oxidase and NF-kB were studied. Role of these AGE modified proteins and RAGE signaling in breast cancer is discussed.  相似文献   
156.
We earlier reported the mitogenic and immunostimulatory activities of Rhizoctonia bataticola lectin (RBL), purified from phytopathogenic fungus R. bataticola in human PBMC. The lectin demonstrates specificity towards glycoproteins containing complex N-glycans. Since CD45-protein tyrosine phosphatase that abundantly expresses N-glycans is important in T-cell signaling, the study aimed to investigate the involvement of CD45 in the immunomodulatory activities of RBL. Flowcytometry and confocal microscopy studies revealed that RBL exhibited binding to PBMC and colocalized with CD45. The binding was comparable in cells expressing different CD45 isoforms-RA, -RB and -RO. CD45 blocking antibody reduced the binding and proliferation of PBMC induced by RBL. CD45-PTPase inhibitor dephostatin inhibited RBL-induced proliferation, expression of CD25 and pZAP-70. RBL-induced secretion of Th1/Th2 cytokines were significantly inhibited in presence of dephostatin. Also, dephostatin blocked phosphorylation of p38MAPK and STAT-5 that was crucial for the biological functions of RBL. The study demonstrates the involvement of CD45-mediated signaling in RBL-induced PBMC proliferation and Th1/Th2 cytokine secretion through activation of p38MAPK and STAT-5.  相似文献   
157.
Nuclear pore complexes (NPCs) facilitate selective transport of macromolecules across the nuclear envelope in interphase eukaryotic cells. NPCs are composed of roughly 30 different proteins (nucleoporins) of which about one third are characterized by the presence of phenylalanine-glycine (FG) repeat domains that allow the association of soluble nuclear transport receptors with the NPC. Two types of FG (FG/FxFG and FG/GLFG) domains are found in nucleoporins and Nup98 is the sole vertebrate nucleoporin harboring the GLFG-type repeats. By immuno-electron microscopy using isolated nuclei from Xenopus oocytes we show here the localization of distinct domains of Nup98. We examined the localization of the C- and N-terminal domain of Nup98 by immunogold-labeling using domain-specific antibodies against Nup98 and by expressing epitope tagged versions of Nup98. Our studies revealed that anchorage of Nup98 to NPCs through its C-terminal autoproteolytic domain occurs in the center of the NPC, whereas its N-terminal GLFG domain is more flexible and is detected at multiple locations within the NPC. Additionally, we have confirmed the central localization of Nup98 within the NPC using super resolution structured illumination fluorescence microscopy (SIM) to position Nup98 domains relative to markers of cytoplasmic filaments and the nuclear basket. Our data support the notion that Nup98 is a major determinant of the permeability barrier of NPCs.  相似文献   
158.
Although vinyl sulfone-modified- (VSM) pent-2'-enofuranosyl nucleosides 2 and hex-2-enopyranosyl glycoside 4 are easily synthesized from the corresponding mesylated sulfones 1c and 3c, respectively, via an oxidation-mesylation-elimination route, the 3'-C-sulfonyl-hex-2'-enopyranosylthymine 11 is not obtained from 10 and a glycal derivative 12 is formed instead. On the other hand, 3'-C-sulfonyl-hex-3'-enopyranosylthymine 20 is easily synthesized from the mesylated sulfone 19. Again unlike the reaction patterns of VSM-pent-2'-enofuranosyl nucleosides 2 and hex-2-enopyranosyl glycosides 4 as Michael acceptors, the reactions of nucleophiles with 3'-C-sulfonyl-hex-3'-enopyranosylthymine 20 yielded a rearranged product 21 instead of Michael adducts.  相似文献   
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号