首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   885篇
  免费   41篇
  2023年   8篇
  2022年   13篇
  2021年   34篇
  2020年   22篇
  2019年   14篇
  2018年   22篇
  2017年   18篇
  2016年   32篇
  2015年   37篇
  2014年   45篇
  2013年   62篇
  2012年   82篇
  2011年   81篇
  2010年   58篇
  2009年   34篇
  2008年   53篇
  2007年   51篇
  2006年   42篇
  2005年   33篇
  2004年   28篇
  2003年   21篇
  2002年   18篇
  2001年   14篇
  2000年   9篇
  1999年   11篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1986年   6篇
  1985年   3篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1969年   1篇
排序方式: 共有926条查询结果,搜索用时 125 毫秒
71.
Salinity tolerance in rice is highly desirable to sustain production in areas rendered saline due to various reasons. It is a complex quantitative trait having different components, which can be dissected effectively by genome-wide association study (GWAS). Here, we implemented GWAS to identify loci controlling salinity tolerance in rice. A custom-designed array based on 6,000 single nucleotide polymorphisms (SNPs) in as many stress-responsive genes, distributed at an average physical interval of <100 kb on 12 rice chromosomes, was used to genotype 220 rice accessions using Infinium high-throughput assay. Genetic association was analysed with 12 different traits recorded on these accessions under field conditions at reproductive stage. We identified 20 SNPs (loci) significantly associated with Na+/K+ ratio, and 44 SNPs with other traits observed under stress condition. The loci identified for various salinity indices through GWAS explained 5–18% of the phenotypic variance. The region harbouring Saltol, a major quantitative trait loci (QTLs) on chromosome 1 in rice, which is known to control salinity tolerance at seedling stage, was detected as a major association with Na+/K+ ratio measured at reproductive stage in our study. In addition to Saltol, we also found GWAS peaks representing new QTLs on chromosomes 4, 6 and 7. The current association mapping panel contained mostly indica accessions that can serve as source of novel salt tolerance genes and alleles. The gene-based SNP array used in this study was found cost-effective and efficient in unveiling genomic regions/candidate genes regulating salinity stress tolerance in rice.  相似文献   
72.
73.
Renewable biomass is considered as an important energy resource all over the world and for an agriculture based economy like that of India, the future prospects of being able to convert widely available biomass materials into various forms of fuel is most attractive. In this study, pyrolysis of groundnut de-oiled cake was investigated with an aim of studying the physical and chemical characteristics of the bio-fuel produced and to determine its feasibility as a commercial fuel. Thermal pyrolysis of groundnut de-oiled cake was done in a semi-batch reactor at a temperature range of 200-500 °C and at a heating rate of 20 °C/min. The chemical analysis of the bio-fuel showed the presence of functional groups such as alkanes, alkenes, alkynes, aldehydes, ketones, carboxylic acids, esters, amines, nitriles, nitro compounds and aromatics rings. The physical properties of the bio-fuel obtained were close to that of diesel and petrol.  相似文献   
74.
Chloroplast movement in response to changing light conditions optimizes photosynthetic light absorption. This repositioning is stimulated by blue light perceived via the phototropin photoreceptors and is transduced to the actin cytoskeleton. Some actin-based motility systems use filament reorganizations rather than myosin-based translocations. Recent research favors the hypothesis that chloroplast movement is driven by actin reorganization at the plasma membrane, but no proteins affecting chloroplast movements have been shown to associate with both the plasma membrane and actin filaments in vivo. Here we identified THRUMIN1 as a critical link between phototropin photoreceptor activity at the plasma membrane and actin-dependent chloroplast movements. THRUMIN1 bundles filamentous actin in vitro, and it localizes to the plasma membrane and displays light- and phototropin-dependent localization to microfilaments in vivo. These results suggest that phototropin-induced actin bundling via THRUMIN1 is important for chloroplast movement. A mammalian homolog of THRUMIN1, GRXCR1, has been implicated in auditory responses and hair cell stereocilla development as a regulator of actin architecture. Studies of THRUMIN1 will help elucidate the function of this family of eukaryotic proteins.  相似文献   
75.
Peptides are important naturally occurring ligands of MHC molecules. X-ray crystallographic studies have enabled extensive characterization of such peptide ligands. Yet structural and dynamic changes of these peptides in the MHC bound state are not well understood. These conformational transitions are key to understanding the function of MHC molecules and for the development of peptide-based therapeutics. Employing NMR for such studies can fill this gap but it requires the availability of peptides labeled with NMR-active nuclei. Here we report production of nine-mer MHC-binding peptides for use in high resolution NMR studies. The method utilizes a fusion protein approach of attaching the peptide to an easily expressed bacterial protein. The fusion protein construct design allows for rapid purification of the fusion protein and avoids chemical modification of the peptide as a result of the cleavage reaction. The methods developed here allow for rapid cloning of additional MHC binding peptides without significant molecular biology effort. 8?C10 mg of mature freeze dried peptides can be obtained from 1 liter of minimal media, sufficient for NMR experimentation. Six uniformly 15N-labeled peptides have been successfully expressed in bacteria and NMR spectra with the expected number of well-resolved signals were recorded. The results obtained here will make peptide-MHC complexes amenable to structural analysis which has not been possible previously.  相似文献   
76.
77.
78.

Background

Protein-protein interactions play a crucial role in enabling a pathogen to survive within a host. In many cases the interactions involve a complex of proteins rather than just two given proteins. This is especially true for pathogens like M. tuberculosis that are able to successfully survive the inhospitable environment of the macrophage. Studying such interactions in detail may help in developing small molecules that either disrupt or augment the interactions. Here, we describe the development of an E. coli based bacterial three-hybrid system that can be used effectively to study ternary protein complexes.

Methodology/Principal Findings

The protein-protein interactions involved in M. tuberculosis pathogenesis have been used as a model for the validation of the three-hybrid system. Using the M. tuberculosis RD1 encoded proteins CFP10, ESAT6 and Rv3871 for our proof-of-concept studies, we show that the interaction between the proteins CFP10 and Rv3871 is strengthened and stabilized in the presence of ESAT6, the known heterodimeric partner of CFP10. Isolating peptide candidates that can disrupt crucial protein-protein interactions is another application that the system offers. We demonstrate this by using CFP10 protein as a disruptor of a previously established interaction between ESAT6 and a small peptide HCL1; at the same time we also show that CFP10 is not able to disrupt the strong interaction between ESAT6 and another peptide SL3.

Conclusions/Significance

The validation of the three-hybrid system paves the way for finding new peptides that are stronger binders of ESAT6 compared even to its natural partner CFP10. Additionally, we believe that the system offers an opportunity to study tri-protein complexes and also perform a screening of protein/peptide binders to known interacting proteins so as to elucidate novel tri-protein complexes.  相似文献   
79.
We report the identification and characterization of JAMP (JNK1 [Jun N-terminal kinase 1]-associated membrane protein), a predicted seven-transmembrane protein that is localized primarily within the plasma membrane and associates with JNK1 through its C-terminal domain. JAMP association with JNK1 outcompetes JNK1 association with mitogen-activated protein kinase phosphatase 5, resulting in increased and prolonged JNK1 activity following stress. Elevated expression of JAMP following UV or tunicamycin treatment results in sustained JNK activity and a higher level of JNK-dependent apoptosis. Inhibition of JAMP expression by RNA interference reduces the degree and duration of JNK activation and concomitantly the level of stress-induced apoptosis. Through its regulation of JNK1 activity, JAMP emerges as a membrane-anchored regulator of the duration of JNK1 activity in response to diverse stress stimuli.  相似文献   
80.
Vascular smooth muscle (VSM) derived from pulmonary arteries generally contract to hypoxia, whereas VSM from systemic arteries usually relax, indicating the presence of basic oxygen-sensing mechanisms in VSM that are adapted to the environment from which they are derived. This review considers how fundamental processes associated with the generation of reactive oxygen species (ROS) by oxidase enzymes, the metabolic control of cytosolic NADH, NADPH and glutathione redox systems, and mitochondrial function interact with signaling systems regulating vascular force in a manner that is potentially adapted to be involved in Po2 sensing. Evidence for opposing hypotheses of hypoxia, either decreasing or increasing mitochondrial ROS, is considered together with the Po2 dependence of ROS production by Nox oxidases as sensors potentially contributing to hypoxic pulmonary vasoconstriction. Processes through which ROS and NAD(P)H redox changes potentially control interactive signaling systems, including soluble guanylate cyclase, potassium channels, and intracellular calcium are discussed together with the data supporting their regulation by redox in responses to hypoxia. Evidence for hypothesized potential differences between systemic and pulmonary arteries originating from properties of mitochondrial ROS generation and the redox sensitivity of potassium channels is compared with a new hypothesis in which differences in the control of cytosolic NADPH redox by the pentose phosphate pathway results in increased NADPH and Nox oxidase-derived ROS in pulmonary arteries, whereas lower levels of glucose-6-phosphate dehydrogenase in coronary arteries may permit hypoxia to activate a vasodilator mechanism controlled by oxidation of cytosolic NADPH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号