首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   471篇
  免费   14篇
  2024年   1篇
  2023年   7篇
  2022年   8篇
  2021年   28篇
  2020年   15篇
  2019年   11篇
  2018年   15篇
  2017年   15篇
  2016年   25篇
  2015年   24篇
  2014年   32篇
  2013年   37篇
  2012年   45篇
  2011年   44篇
  2010年   36篇
  2009年   24篇
  2008年   33篇
  2007年   20篇
  2006年   18篇
  2005年   12篇
  2004年   12篇
  2003年   14篇
  2002年   4篇
  2001年   1篇
  1993年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有485条查询结果,搜索用时 31 毫秒
351.
A series of novel amino-carboxylic based pyrazole as protein tyrosine phosphatase 1B (PTP1B) inhibitors were designed on the basis of structure-based pharmacophore model and molecular docking. Compounds containing different hydrophobic tail (1,2-diphenyl ethanone, oxdiadizole and dibenzyl amines) were synthesized and evaluated in PTP1B enzymatic assay. Structure–activity relationship based optimization resulted in identification of several potent, metabolically stable and cell permeable PTP1B inhibitors.  相似文献   
352.
353.
354.
The cornea is a complex tissue that must preserve its transparency to maintain optimal vision. However, in some circumstances, damage to the eye can result in neovascularization that impairs vision. This outcome can occur when herpes simplex virus type 1 (HSV-1) causes the immunoinflammatory lesion stromal keratitis (SK). Potentially useful measures to control the severity of SK are to target angiogenesis which with herpetic SK invariably involves VEGF. One such way to control angiogenesis involves the endothelial receptor Robo4 (R4), which upon interaction with another protein activates an antiangiogenic pathway that counteracts VEGF downstream signaling. In this study we show that mice unable to produce R4 because of gene knockout developed significantly higher angiogenesis after HSV-1 ocular infection than did infected wild type (WT) controls. Moreover, providing additional soluble R4 (sR4) protein by subconjunctival administration to R4 KO HSV-1 infected mice substantially rescued the WT phenotype. Finally, administration of sR4 to WT HSV-1 infected mice diminished the extent of corneal angiogenesis compared to WT control animals. Our results indicate that sR4 could represent a useful therapeutic tool to counteract corneal angiogenesis and help control the severity of SK.  相似文献   
355.
Present study deciphers preparation of co-crystals of lipophilic glipizide by using four different acids, oxalic, malonic, stearic, and benzoic acids, in order to achieve enhanced solubility and dissolution along with stability. All co-crystals were prepared by dissolving drug and individual acids in the ratio of 1:0.5 in acetonitrile at 60–70°C for 15 min, followed by cooling at room temperature for 24 h. FT-IR spectroscopy revealed no molecular interaction between acids and drug as the internal structure and their geometric configurations remain unchanged. Differential scanning calorimetry revealed closer melting points of raw glipizide and its co-crystals, which speculates absence of difference in crystallinity as well as intermolecular bonding of the co-crystals and drug. PXRD further revealed that all the co-crystals were having similar crystallinity as that of raw glipizide except glipizide-malonic acid co-crystals. This minor difference in the relative intensities of some of the diffraction peaks could be attributed to the crystal habit or crystal size modification. SEM revealed difference in the crystal morphology for all the co-crystals. Micromeritic, solubility, dissolution, and stability data revealed that among all the prepared co-crystals, glipizide-stearic acid co-crystals were found superior. Hence, it was concluded that glipizide-stearic acid co-crystals could offer an improved drug design strategy to overcome dissolution and bioavailability related challenges associated with lipophilic glipizide.  相似文献   
356.
In the present investigation, a UPLC–qTOF-MS/MS method has been developed for the simultaneous determination of etoposide and a piperine analogue, namely, 4-ethyl 5-(3,4-methylenedioxyphenyl)-2E,4E-pentadienoic acid piperidide (PA-1). The analytes were separated on a reverse phase C18 column using methanol–water (72:28, v/v) mobile phase with a flow rate of 250 μL/min. The qTOF-MS was operated under multiple reaction monitoring mode using electro-spray ionization (ESI) technique with positive ion polarity. The major product ions for etoposide and PA-1 were at m/z 185.1350 and 164.1581, respectively. The recovery of the analytes from mouse plasma was optimized using solid phase extraction technique. The total run time was 6 min and the elution of etoposide and PA-1 occurred at 1.24 and 2.84 min, respectively. The calibration curves of etoposide as well as PA-1 were linear over the concentration range of 2–1000 ng/mL (r2, 0.9829), and 1–1000 ng/mL (r2, 0.9989), respectively. For etoposide intra-assay and inter-assay accuracy in terms of % bias was in between ?7.65 to +6.26, and ?7.83 to +5.99, respectively. For PA-1 intra-assay and inter-assay accuracy in terms of % bias was in between ?7.01 to +9.10, and ?7.36 to +6.71, respectively. The lower limit of quantitation for etoposide and PA-1 were 2.0 and 1.0 ng/mL, respectively. Analytes were stable under various conditions (in autosampler, during freeze–thaw, at room temperature, and under deep-freeze conditions). The method was used for a pharmacokinetic study which showed that PA-1 enhanced the oral bioavailability of etoposide in mice by 2.32-fold.  相似文献   
357.
A yeast strain Kluyveromyces sp. IIPE453 (MTCC 5314), isolated from soil samples collected from dumping sites of crushed sugarcane bagasse in Sugar Mill, showed growth and fermentation efficiency at high temperatures ranging from 45°C to 50°C. The yeast strain was able to use a wide range of substrates, such as glucose, xylose, mannose, galactose, arabinose, sucrose, and cellobiose, either for growth or fermentation to ethanol. The strain also showed xylitol production from xylose. In batch fermentation, the strain showed maximum ethanol concentration of 82 ± 0.5 g l−1 (10.4% v/v) on initial glucose concentration of 200 g l−1, and ethanol concentration of 1.75 ± 0.05 g l−1 as well as xylitol concentration of 11.5 ± 0.4 g l−1 on initial xylose concentration of 20 g l−1 at 50°C. The strain was capable of simultaneously using glucose and xylose in a mixture of glucose concentration of 75 g l−1 and xylose concentration of 25 g l−1, achieving maximum ethanol concentration of 38 ± 0.5 g l−1 and xylitol concentration of 14.5 ± 0.2 g l−1 in batch fermentation. High stability of the strain was observed in a continuous fermentation by feeding the mixture of glucose concentration of 75 g l−1 and xylose concentration of 25 g l−1 by recycling the cells, achieving maximum ethanol concentration of 30.8 ± 6.2 g l−1 and xylitol concentration of 7.35 ± 3.3 g l−1 with ethanol productivity of 3.1 ± 0.6 g l−1 h−1 and xylitol productivity of 0.75 ± 0.35 g l−1 h−1, respectively.  相似文献   
358.
The use of synthetic polymeric vascular grafts is limited by the thrombogenecity of most biomaterials. Efforts to reduce thrombogenicity by seeding grafts with endothelial cells, the natural non-thrombogenic lining of blood vessels, have been thwarted by flow-induced cell detachment. We hypothesized that by creating well-defined micro-textured patterns on a surface, fluid flow at the surface can be altered to create discrete regions of low shear stress. We further hypothesized that, due to reduced shear stress, these regions will serve as sanctuaries for endothelial cells and promote their retention. To test these hypotheses, well-defined micro-textured polyurethane (PU) surfaces consisting of arrays of parallel 95-micron wide and 32-micron deep channels were created using an etched silicon template and solvent casting techniques. Based on computational fluid dynamics, under identical bulk flow conditions, the average local shear stress in the channels (46 dyn/cm2) was 28% lower than unpatterned surfaces (60 dyn/cm2). When PU surfaces pre-seeded with endothelial cells (EC) were exposed to the same bulk flow rate, EC retention was significantly improved on the micropatterned surfaces relative to un-patterned surfaces (92% vs. 58% retention).  相似文献   
359.
Plantar heel pain is a common condition that is often exacerbated by the repetitive stresses of walking. Treatment usually includes an in-shoe intervention designed to reduce plantar pressure under the heel by using insoles and a variety of off-the-shelf products. The design process for these products is often intuitive in nature and does not always rely on scientifically derived guidelines. Finite element analysis provides an efficient computational framework to investigate the performance of a large number of designs for optimal plantar pressure reduction. In this study, we used two-dimensional plane strain finite element modeling to investigate 27 insole designs. Combinations of three insole conformity levels (flat, half conforming, full conforming), three insole thickness values (6.3, 9.5 and 12.7 mm) and three insole materials (Poron Cushioning, Microcel Puff Lite and Microcel Puff) were simulated during the early support phase of gait. Plantar pressures predicted by the model were validated by experimental trials conducted in the same subject whose heel was modeled by loading the bare foot on a rigid surface and on foam mats. Conformity of the insole was the most important design variable, whereas peak pressures were relatively insensitive to insole material selection. The model predicted a 24% relief in pressure compared to barefoot conditions when using flat insoles; the reduction increased up to 44% for full conforming insoles.  相似文献   
360.
Antiangiogenic molecules exert a feedback control to restrain pathological angiogenesis, which includes physical binding or inhibition of angiogenic signaling in blood vessel endothelial cells. The latter is the case in which Slit2 ligand-dependent activation of the blood vessel endothelial cell receptor roundabout 4 (Robo4) occurs. In this study, we demonstrate that Robo4 receptors are upregulated following HSV infection of the eye on the majority of the new blood vessel endothelial cells that occur in the corneal stroma. However, expression levels of the ligand for Robo4 receptors, Slit2, was not significantly increased during the disease process, and the knockdown of Slit2 gene expression using lentiviral short hairpin RNAs had no effect on the extent of pathological angiogenesis. In contrast, providing additional Slit2 protein by subconjunctival administration resulted in significantly reduced angiogenesis. The Slit2 binding to Robo4 was shown to block the downstream vascular endothelial growth factor signaling molecules Arf 6 and Rac 1 and reduce the antiapoptotic molecule Bcl-xL in blood vessel endothelial cells. Our results indicate that augmenting the host Robo4/Slit2 system could provide a useful therapeutic approach to control pathological angiogenesis associated with HSV induced stromal keratitis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号