首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3700篇
  免费   181篇
  2022年   15篇
  2021年   35篇
  2020年   17篇
  2019年   28篇
  2018年   34篇
  2017年   40篇
  2016年   62篇
  2015年   81篇
  2014年   99篇
  2013年   182篇
  2012年   158篇
  2011年   156篇
  2010年   128篇
  2009年   114篇
  2008年   197篇
  2007年   203篇
  2006年   192篇
  2005年   196篇
  2004年   200篇
  2003年   173篇
  2002年   204篇
  2001年   111篇
  2000年   110篇
  1999年   109篇
  1998年   44篇
  1997年   47篇
  1996年   35篇
  1995年   46篇
  1994年   42篇
  1993年   32篇
  1992年   81篇
  1991年   60篇
  1990年   67篇
  1989年   55篇
  1988年   51篇
  1987年   46篇
  1986年   52篇
  1985年   52篇
  1984年   43篇
  1983年   35篇
  1982年   20篇
  1981年   29篇
  1979年   21篇
  1978年   28篇
  1977年   21篇
  1976年   15篇
  1975年   17篇
  1973年   18篇
  1972年   12篇
  1970年   14篇
排序方式: 共有3881条查询结果,搜索用时 296 毫秒
191.
192.
193.
Medaka (Oryzias latipes) is a small freshwater teleost that provides an excellent developmental genetic model complementary to zebrafish. Our recent mutagenesis screening using medaka identified headfish (hdf) which is characterized by the absence of trunk and tail structures with nearly normal head including the midbrain-hindbrain boundary (MHB). Positional-candidate cloning revealed that the hdf mutation causes a functionally null form of Fgfr1. The fgfr1hdf is thus the first fgf receptor mutant in fish. Although FGF signaling has been implicated in mesoderm induction, mesoderm is induced normally in the fgfr1hdf mutant, but subsequently, mutant embryos fail to maintain the mesoderm, leading to defects in mesoderm derivatives, especially in trunk and tail. Furthermore, we found that morpholino knockdown of medaka fgf8 resulted in a phenotype identical to the fgfr1hdf mutant, suggesting that like its mouse counterpart, Fgf8 is a major ligand for Fgfr1 in medaka early embryogenesis. Intriguingly, Fgf8 and Fgfr1 in zebrafish are also suggested to form a major ligand-receptor pair, but their function is much diverged, as the zebrafish fgfr1 morphant and zebrafish fgf8 mutant acerebellar (ace) only fail to develop the MHB, but develop nearly unaffected trunk and tail. These results provide evidence that teleost fish have evolved divergent functions of Fgf8-Fgfr1 while maintaining the ligand-receptor relationships. Comparative analysis using different fish is thus invaluable for shedding light on evolutionary diversification of gene function.  相似文献   
194.
The small GTPase Rab6 regulates retrograde membrane traffic from endosomes to the Golgi apparatus and from the Golgi to the endoplasmic reticulum (ER). We examined the role of a Rab6-binding protein, TMF/ARA160 (TATA element modulatory factor/androgen receptor-coactivator of 160 kDa), in this process. High-resolution immunofluorescence imaging revealed that TMF signal surrounded Rab6-positive Golgi structures and immunoelectron microscopy revealed that TMF is concentrated at the budding structures localized at the tips of cisternae. The knockdown of either TMF or Rab6 by RNA interference blocked retrograde transport of endocytosed Shiga toxin from early/recycling endosomes to the trans-Golgi network, causing missorting of the toxin to late endosomes/lysosomes. However, the TMF knockdown caused Rab6-dependent displacement of N-acetylgalactosaminyltransferase-2 (GalNAc-T2), but not beta1,4-galactosyltransferase (GalT), from the Golgi. Analyses using chimeric proteins, in which the cytoplasmic regions of GalNAc-T2 and GalT were exchanged, revealed that the cytoplasmic region of GalNAc-T2 plays a crucial role in its TMF-dependent Golgi retention. These observations suggest critical roles for TMF in two Rab6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER.  相似文献   
195.
In deletion-mapping of W-specific RAPD (W-RAPD) markers and putative female determinant gene (Fem), we used X-ray irradiation to break the translocation-carrying W chromosome (W Ze ). We succeeded in obtaining a fragment of the W Ze chromosome designated as Ze W, having 3 of 12 W-RAPD markers (W-Bonsai, W-Yukemuri-S, W-Yukemuri-L). Inheritance of the Ze W fragment by males indicates that it does not include the Fem gene. On the basis of these results, we determined the relative positions of W-Yukemuri-S and W-Yukemuri-L, and we narrowed down the region where Fem gene is located. In addition to the Ze W fragment, the Z chromosome was also broken into a large fragment (Z1) having the + sch (1-21.5) and a small fragment (Z2) having the + od (1-49.6). Moreover, a new chromosomal fragment (Ze WZ2) was generated by a fusion event between the Ze W and the Z2 fragments. We analyzed the genetic behavior of the Z1 fragment and the Ze WZ2 fragment during male (Z/Z1 Ze WZ2) and female (Z1 Ze WZ2/W) meiosis using phenotypic markers. It was observed that the Z1 fragment and the Z or the W chromosomes separate without fail. On the other hand, non-disjunction between the Ze WZ2 fragment and the Z chromosome and also between the Ze WZ2 fragment and the W chromosome occurred. Furthermore, the females (2A: Z/Ze WZ2/W) and males (2A: Z/Z1) resulting from non-disjunction between the Ze WZ2 fragment and the W chromosome had phenotypic defects: namely, females exhibited abnormal oogenesis and males were flapless due to abnormal indirect flight muscle structure. These results suggest that Z2 region of the Z chromosome contains dose-sensitive gene(s), which are involved in oogenesis and indirect flight muscle development.  相似文献   
196.
Family and twin studies suggest that a substantial genetic component underlies individual differences in craniofacial morphology. In the current study, we quantified 444 craniofacial traits in 100 individuals from two inbred medaka (Oryzias latipes) strains, HNI and Hd-rR. Relative distances between defined landmarks were measured in digital images of the medaka head region. A total of 379 traits differed significantly between the two strains, indicating that many craniofacial traits are controlled by genetic factors. Of these, 89 traits were analyzed via interval mapping of 184 F(2) progeny from an intercross between HNI and Hd-rR. We identified quantitative trait loci for 66 craniofacial traits. The highest logarithm of the odds score was 6.2 for linkage group (LG) 9 and 11. Trait L33, which corresponds to the ratio of head length to head height at eye level, mapped to LG9; trait V15, which corresponds to the ratio of snout length to head width measured behind the eyes, mapped to LG11. Our initial results confirm the potential of the medaka as a model system for the genetic analysis of complex traits such as craniofacial morphology.  相似文献   
197.
To examine the involvement of lipid rafts in an age-associated decline in T cell function, we analyzed the effect of aging on the constituents of lipid rafts in resting mouse CD4(+) T cells. We found a pronounced, age-dependent reduction in PAG/Cbp, which is involved in the regulation of Src family kinases (SFKs) by recruiting Csk (a negative regulator of SFKs) to lipid rafts. This reduction is specific for T cells and is attributed, at least in part, to the reduction in its mRNA level. The reduction of PAG accompanies marked impairment in recruiting Csk to lipid rafts and a concomitant decrease in the inactive forms of SFKs. These findings indicate that old mouse CD4(+) T cells have a defect in a negative SFK regulatory system.  相似文献   
198.
Intact osteoactivin, a novel type I membrane glycoprotein, were shed at a dibasic motif in the juxtamembrane region in C2C12 myoblasts. Extracellular fragments were secreted into the culture media by a putative metalloprotease. Extracellular fragments of osteoactivin, but not control protein, induced matrix metalloprotease-3 (MMP-3) expression in NIH-3T3 fibroblasts. Epidermal growth factor (ERK) kinase inhibitors inhibited the osteoactivin-mediated MMP-3 expression, whereas the extracellular fragment of osteoactivin activated ERK1/2 and p38 in the mitogen-activated protein kinase pathway. Our results suggest that the extracellular fragments of osteoactivin produced by shedding act as a growth factor to induce MMP-3 expression via the ERK pathway in fibroblasts.  相似文献   
199.
200.
Streptomyces and other bacterial actinomycete species produce many important natural products, including the majority of known antibiotics, and cytochrome P450 (P450) enzymes catalyze important biosynthetic steps. Relatively few electron transport pathways to P450s have been characterized in bacteria, particularly streptomycete species. One of the 18 P450s in Streptomyces coelicolor A3(2), P450 105D5, was found to bind fatty acids tightly and form hydroxylated products when electrons were delivered from heterologous systems. The six ferredoxin (Fdx) and four flavoprotein Fdx reductase (FDR) proteins coded by genes in S. coelicolor were expressed in Escherichia coli, purified, and used to characterize the electron transfer pathway. Of the many possibilities, the primary pathway was NADH --> FDR1 --> Fdx4 --> P450 105D5. The genes coding for FDR1, Fdx4, and P450 105D5 are located close together in the S. coelicolor genome. Several fatty acids examined were substrates, including those found in S. coelicolor extracts, and all yielded several products. Mass spectra of the products of lauric acid imply the 8-, 9-, 10-, and 11-hydroxy derivatives. Hydroxylated fatty acids were also detected in vivo in S. coelicolor. Rates of electron transfer between the proteins were measured; all steps were faster than overall hydroxylation and consistent with rates of NADH oxidation. Substrate binding, product release, and oxygen binding were relatively fast in the catalytic cycle; high kinetic deuterium isotope effects for all four lauric acid hydroxylations indicated that the rate of C-H bond breaking is rate-limiting in every case. Thus, an electron transfer pathway to a functional Streptomyces P450 has been established.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号